高等数学练习题第二章导数与微分系专业班姓名学号第一节导数概念一.填空题1.若)(0xf存在,则xxfxxfx)()(lim000=)(0xf2.若)(0xf存在,hhxfhxfh)()(lim000=)(20xf.000(3)()limxfxxfxx=03()fx.3.设20)(xf,则)()2(lim)000xfxxfxx414.已知物体的运动规律为2tts(米),则物体在2t秒时的瞬时速度为5(米/秒)5.曲线xycos上点(3,21)处的切线方程为03123yx,法线方程为0322332yx6.用箭头⇒或⇏表示在一点处函数极限存在、连续、可导、可微之间的关系,可微可导|连续极限存在。二、选择题1.设0)0(f,且)0(f存在,则xxfx)(lim0=[B](A))(xf(B))0(f(C))0(f(D)21)0(f2.设)(xf在x处可导,a,b为常数,则xxbxfxaxfx)()(lim0=[B](A))(xf(B))()(xfba(C))()(xfba(D)2ba)(xf3.函数在点0x处连续是在该点0x处可导的条件[B](A)充分但不是必要(B)必要但不是充分(C)充分必要(D)即非充分也非必要4.设曲线22xxy在点M处的切线斜率为3,则点M的坐标为[B](A)(0,1)(B)(1,0)(C)(0,0)(D)(1,1)5.设函数|sin|)(xxf,则)(xf在0x处[B](A)不连续。(B)连续,但不可导。(C)可导,但不连续。(D)可导,且导数也连续。三、设函数11)(2xbaxxxxf为了使函数)(xf在1x处连续且可导,a,b应取什么值。解:由于)(xf在1x处连续,所以)1()1(1)1(fbaff即1ba又)(xf在1x处可导,所以2'11(1)lim21xxfx'1()(1)lim1xaxbabfax有2a,1b故求得2a,1b四、如果)(xf为偶函数,且)0(f存在,证明)0(f=0。解:由于)(xf是偶函数,所以有)()(xfxf0()(0)(0)lim0xfxffx0()(0)lim0xfxfx0()(0)lim(0)xttftfft令即0)0(2f,故0)0(f五、证明:双曲线2axy上任一点处的切线与两坐标轴构成三角形的面积为定值。解:222,xayxay在任意),(00yx处的切线方程为)(02020xxxayy则该切线与两坐标轴的交点为:)2,0(02xa和)0,2(0x所以切线与两坐标轴构成的三角形的面积为20222221axxaA,(a是已知常数)故其值为定值.高等数学练习题第二章导数与微分系专业班级姓名学号第二节求导法则(一)一、填空题1.xxysin)sec2(,y=1cos2tan2xx;xeysin,y=xxesincos.2.)2cos(xey,y=2sin(2)xxee;y=xx2sin,y=22sin2cos2xxxx3.2tanln,=csc;r2lnlog2xx,r=ex22loglog4.)tanln(secttw,w=tsec.2arccos()yxx,y2221()xxxx5.)1(2x21xx;(cx21)=21xx.6.]2tan[lnx=;(cxx)1ln(2)=211x.二、选择题1.已知y=xxsin,则y=[B](A)2cossinxxxx(B)2sincosxxxx(C)2sinsinxxxx(D)xxxxsincos232.已知y=xxcos1sin,则y=[C](A)1cos21cosxx(B)1cos2cos1xx(C)xcos11(D)xxcos11cos23.已知xeysec,则y=[A](A)xxxeeetansec(B)xxeetansec(C)xetan(D)xxeecot4.已知)1ln(2xxy,则y=[A](A)211x(B)21x(C)21xx(D)12x5.已知xycotln,则4|xy=[D](A)1(B)2(C)2/1(D)26.已知xxy11,则y=[B](A)2)1(2x(B)2)1(2x(C)2)1(2xx(D)2)1(2xx三、计算下列函数的导数:(1)33ln()lnyxx(2))tan(lnxy解:2333111()(ln)3yxxxx解:xxy1)(lnsec'223111(ln)33yxxx)(lnsec12xx(3)veu1sin2(4))(lnsec3xy解:veuv1sin2('1sin2))1(1cos2vv解:)sec(ln)(lnsec3'2xxyxx1)tan(lnvevv1sin222sin1)tan(ln)(lnsec33xxx(5)2ln(1)yxx(6)1arctan1xyx解:221'(1)'1yxxxx解:211()111()1xyxxx221(1)11xxxx211x22211(1)xxxxx四、设)(xf可导,求下列函数y的导数dxdy(1))()(xfxeefy(2))(cos)(sin22xfxfy解:)()(''xfxxeeefy解:xxxfycossin2)(sin''2)(')()(xfeefxfx2'(cos)(2cos(sin))fxxx=)()(')('[)(xxxxfefxfefee=22sin2('(sin)'(cos))xfxfx(3))](arctan[xfy(4))](sin[)(sinxfxfy解:)(')(11'2xfxfy解:xxfycos)(sin'')('))(cos(xfxf=)(1)('2xfxf)(sin'cosxx))(cos()('xfxf高等数学练习题第二章导数与微分系专业班级姓名学号第二节求导法则(二)一、填空题:1.xeyx3cos2,y)3sin33cos21(2xxex;xy2ln1,yxxx2ln1ln2.xy1arccos,y1||12xx;xarxeytan,yxexxarctan)1(213.xxysin21sin2arcsin,yxsin234.设1lnarctan22xxxeeey,则1xdxdy242(1)1eee5.设322)(xexy,则0|xy316.设)(xf有连续的导数,0)0(f,且bf)0(,若函数0,0,sin)()(xAxxxaxfxF在0x处连续,则常数A=ba二、选择题:1.设)(xfy,则y[D](A))(xf(B))(xf(C))(xf(D))(xf2.设周期函数)(xf在),(可导,周期为4,又12)1()1(lim0xxffx,则曲线)(xfy在点))5(,5(f处的切线的斜率为[D](A)21(B)0(C)1(D)23.已知212arctan21xxy,则y=[C](A)112x(B)21x(C)112x(D)12x4.已知)lnarcsin(xxy,则y=[C](A)xln(B)2)ln(1lnxxxx(C)2)ln(1ln1xxx(D)1ln)ln(12xxx三、已知2arctan)(,2323xxfxxfy,求:0|xdxdy解:令2323xxu,则)(ufy且2arctan)('uuf)'2323(arctan')('2xxuuufdxdududydxdy22)2323arctan()23(12xxx0xdxdy43)2323arctan()23(12022xxxx四、设0x时,可导函数)(xf满足:xxfxf3)1(2)(,求)(xf)0(x解:令xt1,则ttftf3)(2)1(,即xxfxf3)(2)1((1)又xxfxf3)1(2)((2)由(1)式和(2)式可得xxxf12)(212)'12()('xxxxf五、已知)(2)(xfax,且)(ln1)(xfaxf,证明:)(2)(xx证明:因为)(')(2ln)'()(')()(22xfxfaaaxxfxf,又)(ln1)(xfaxf所以)(22)(')(2xaxxf六、证明:可导的奇函数的导数是偶函数。证明:设)(xf是奇函数且可导.则)()(xfxf,即)()(xfxf)('))'(()('xfxfxf从而)('xf是偶函数.高等数学(Ⅰ)练习第二章一元函数微分学系专业班姓名学号习题四隐函数及由参数方程所确定的函数的导数一、填空题1.设yxey1,则y=yey2.2.设)tan(rr,则r=)(csc2r.3.设xyyxarctanln22,则y=yxyx。4.设teytexttcossin,则dxdy=ttttcossinsincos,3|tdxdy=23。二、选择题1.由方程0sinyxey所确定的曲线)(xyy在(0,0)点处的切线斜率为[A](A)1(B)1(C)21(D)212.设由方程22xy所确定的隐函数为)(xyy,则dy=[A](A)dxxy2(B)dxxy2(C)dxxy(D)dxxy3.设由方程0sin21yyx所确定的隐函数为)(xyy,则dxdy=[A](A)ycos22(B)ysin22(C)ycos22(D)xcos224.设由方程)cos1()sin(tayttax所确定的函数为)(xyy,则在2t处的导数为[B](A)1(B)1(C)0(D)215.设由方程2ln1arctanxtyt所确定的函数为)(xyy,则dxdy[B](A)212tt(B)1t(C)12t;(D)t..三、求下列函数的导数dydx1.222333xya,2.33cossinxatyat解:方程两边同时对x求导,得解:223sincostan3cossinattytatt113322'033xyy3yyx3.2310xyxyye4.xexxy1sin解:方程两边同时对x求导,得解:)1ln(41sinln21ln21lnxexxy322230xxyxyxyyyeye)1(4sin2cos21'1xxeexxxyy322213xxxyyeyxye))1(4cot221(1sin'xxxeexxexxy四、求曲线0201sin3yexx在0处的切线方程,法线方程解:ddy)23(20cossindedxedxxxsin1cosxxededx,从而cos)sin1)(23(2xxeedxdy当0,1,0yx,edxdy20故切线方程为)1(2xey法线方程为)1(21xey高等数学(Ⅰ)练习第二章一元函数微分学系专业班姓名学号习题五高阶导数一、填空题1.设cosr,则r=sincos,r=coss