307Vol.30No.720117COLLEGEPHYSICSJuly2011櫍櫍櫍櫍櫍櫍櫍櫍櫍櫍櫍櫍殻殻殻殻210087126、xy.x2-y2......27x=1ddx1-x2dyd[]x+νν+1y=0x=1ρ1=ρ2=0x=1——Pνxx=1.Pν1=1ν.x=0x=1.x=1.—Pνx.28ddx1-x2dyd[]x+λ-μ1-x[]2y=0y±1.λ=ll+1l=012….λμ.μΦ″+μΦ=0Φ0=Φ2πΦ'0=Φ'2πμ=m2m=012….μλλ.μ=m2mλ=ll+1l=mm+1m+2…mlmlμ=m2m=012…λ=ll+1l=012….λ=ll+1l=mm+1m+2…m≠0l=01…m-1“”Φ≡0.29ddx1-z2dwd[]z+νν+1-m21-z[]2w=0m=123…|z-1|<2Pmνz=z2-1m/2dmPνzdzmQmνz=z2-1m/2dmQνzdzm230ν=ν<mPmνz≡0.Qmνzm=0.PmνzQmνz.WPmνzQmνz=-m1-z2Γν+m+1Γν-m+1ν-m=ν-m+1WPmνzQmνz=0PmνzQmνz.Pmνz≡0.Γν-m+1Γν+m+1Pmνz=limμ→mΓν-μ+1Γν+μ+1Pμνzν-m=QmνzQmνz.P-mνz.ddz1-z2dwd[]z+νν+1-μ21-z[]2w=0.ν→-ν+1μ→-μz→-zPμνz=1Γ1-μz+1z()-1μ/2F-νν+11-μ1-z()2、.20005.16Pμν-zPμ-ν-1±zP-μν±zP-μ-ν-1±z.Qμνz=eiπμ槡π2ν+1Γν+μ+1Γν+3/2z-ν-μ-1z2-1μ/2·Fν+μ2+1ν+μ+12ν+32z()-2、.20005.17Qμν-zQμ-ν-1±zQ-μν±zQ-μ-ν-1±z.1614..30rlPmlcosθcosmrlPmlcoθsinmr-l-1Pmlcosθcosmr-l-1Pmlcosθsinml=012…m=012…l1r2rr2u()r+1r2sinθsinθu()θ+1r2sin2θ2u2=00<r<a0<θ<π0<<2πu|θ=0u|θ=π0≤r≤a0≤≤2πu|=0=u|=2πu=0=u=2π0≤r≤a0≤θ≤πu|r=0u|r=a=fθ0≤θ≤π0≤≤2πr<arlPmlcosθcosmrlPmlcosθsinmr<ar-l-1·Pmlcosθcosmr-l-1Pmlcosθsinm.25r=0.31urθ=Σ∞l=0Alrl·Plcosθzu.urθ=Σ∞l=0AlrlPlcosθ1Plcosθ0<θ<πΘ0Θπ.21sinθddθsinθdΘd[]θ+λΘ=0723Θ0Θπ/2=0—Θ'π/2=0αΘ'π/2+βΘπ/2=0{.321r2rr2u()r+1r2sinθsinθu()θ+1r2sin2θ2u2=0a<r<b0<θ<π0<<2πu|θ=0u|θ=π0≤r≤a0≤≤2πu|=0=u|=2πu=0=u=2π0≤r≤a0≤θ≤πu|r=0u|r=a=fθ0≤θ≤π0≤≤2πurθ=Σ∞l=0Σlm=0Alrl+Blr-l-1·PmlcosθCmsinm+Dmcosm4rlPmlcosθcosmrlPmlcosθsinmr-l-1Pmlcosθcosmr-l-1Pmlcosθsinm4urθ=Σ∞l=0Σlm=0rlPmlcosθAlmsinm+Blmcosm+Σ∞l=0Σlm=0r-l-1PmlcosθClmsinm+Dlmcosm4.rlr-l-1lsinmcosmmurθ=Σ∞l=0Σlm=0Alrl+Blr-l-1·PmlcosθCmsinm+Dmcosm=Σ∞l=0Σlm=0AlCmrl+BlAlr-l()-1Pmlcosθ·sinm+DmCmcosm=Σ∞l=0Σlm=0A'lmrl+B'lr-l-1Pmlcosθsinm+D'mcosm3AlmAlmB'lAlmB'lD'm.glθ=Σlm=0PmlcosθCmsinm+Dmcosmurθ=Σ∞l=0Alrl+Blr-l-1glθurθa<r<brlr-l-1θ.urθ=Σ∞l=0Σlm=-lAlmrl+Blmr-l-1P|m|lcosθeim.33ut-κ1rrru()r+1r22u[]2=00<r<a0<<2πt>0u|=0=u|=2πu=0=u=2π0≤r≤at>0u|r=0u|r=a=ft0≤≤2πt>0u|t=0=grθ0<r<a0<<2π.ft=Acos2Aurt=vrt+wrt.1ww|=0=w|=2πw=0=w=2πw|r=0w|r=a=Acos22wwt-κ1rrrw()r+1r22w[]2=03t430wtw=wrwr.4rmcosmr-mcosmw=Ar/a2cos2.w=Aa/r2cos2w|r=0.5w=Acos2.vrt.6w=Ar/acos2vrtvrt..34JνzNνzJνzNνzz=z0WJνzNνzz=z0=0WJνzNνz≡0JνzNνz.z=0JνzJ'νz.z=0JνzJ'νz0NνzWJνzNνz0.Reν>1Jν0=J'ν0=0...35^A≡iddx^A^AD^A=D^AD^A=^A^Au=^Auu∈D^A...L201.^A≡iddxL201^AL201^Au≡idudxD^Auxu'x∈L201ux.vxux=∫x0vtdt+u0ux.0.∫10v*idud[]xdx=-i∫10dv*d[]xudx+iv*xux10=∫10idvd[]x*udx+iv*1u1-v*0v0〈v^Au〉=〈^Avu〉+iv*1u1-v*0v0^A≡iddx^Av=idvdxD^A+vxv'x∈L201v0=v1=0.^A.^A^Au≡idudxD^Auxu'x∈L201u0=0^Av=idvdxD^Avxv'x∈L201v1=0^A.^Au≡idudxD^Auxu'x∈L201u0=u1=0222230ThekinematicsequationsofafreeparticleintheSchwarzschildspace-timeNIUZhen-fengLIUWen-biao1.DepartentofPhysicsCollegeofScienceHebeiNorthUniversityZhangjiakouHebei07500China2.DepartmentofPhysicsandInstituteofTheoreticalPhysicsBeijingNormalUniversityBeijing100875ChinaAbstractTheusualformkinematicsequationsofafreeparticleareobtainedviadirectlysolvingthegeodesicsequationsintheSchwarzschildspacetime.Comparingwiththemethodinsometextbookswherethekinematicse-quationsaregivenbythesphericalsymmetryofspace-timeandnormalizedfour-velocitytheresultsarecom-pletelysame.Howeverthegeodesicsmethodismorephysicalanditisusefulandmeaningfultounderstandgeo-desicsequationsinacurvedspace-time.KeywordsSchwarzschildspace-timegeodesicsequationskinematicsequationsinacurvedspace-timemercuryprecessiondeflectionoflight4^Av=idvdxD^Avxv'x∈L201^A.^AD^A≠D^A.^A^A^A≡iddx.^A^AD^AD^AD^Auxu'x∈L201u0=u1=0D^Avxv'x∈L201v0=v1=0^A.^AL201^Au≡idudxD^Auxu'x∈L201u0=±u1^A^Av=idvdxD^Avxv'x∈L201v0=±v1.36〈v^Au〉=〈^Avu〉uv∈D^A^A.1.2.^Au≡idudxD^Auxu'x∈L201u0=u1=0.3.4nUnUn.Questionsandanswersinthecourseof“methodsofmathematicalphysics”WUChong-shiSchoolofPhysicsPekingUniversityBejing100871ChinaAbstractAseriesofquestionswhicharefrequentlyemergedintheteachingofcourseof“methodsofmathemati-calphysics”butwererarelydiscussedinthetextbooksarelisted.Theanswersorexplanationsaregiveninsomedetail.Keywordsmethodsofmathematicalphysicsfunctionofonecomplexvariableequationsofmathematicalphysics