1.平衡微分方程)ρ0)ρ0)ρ0222222twFzyxtvFzyxtuFzyxzzyzzyzyyxyxzxyxx((((5-1))(0i,ijijuf(5-1)’2.几何方程(5-2)ijjiijuu,,21(5-2)3.物理方程(1)应力表示应变)1(21)(11)(11)(1EGGEGEGExyxyyxzzzxzxxzyyyzyzzyxx(5-3)])1[(1ijkkijijvE(5-3)’yuxvzwxwzuyvzvywxuxyzzxyyzx(2)应变表示应力,2xxG.yzyzG,2yyG.xzxzG(5-4),2zzG.xyxyGijkkijijG2(5-4)’4.边界条件nmlfnmlfnmlfyzxzzzyxyyzxyxxzyx(5-5)jinfij(5-5)’5.变形协调方程(相容方程)yxzyxzyxxyzxzyxyxzzxxyzyxxzyyzzxyxzyzxyyxyxyxzyzzxxzxxyxzyzyzzy2222222222222222222)(2)(2)((5-9)6.双调和方程0244224442yUyxUxU(6-15)000特解:yxxyxyyxxyyxxyyxyFxFyFxF或)14-6)13-6通解:2222222222(或(yxUyFxUxFyUyFxFyxUxUyUyxxyyyxxxyyxxyyx6.平面应变(1)平衡微分方程(6-1))ρ0)ρ02222tvFyxtuFyxyyxyxyxx(((2)几何方程(6-2)yuxvyvxuxyyx(3)应变协调方程(6-3)yxxyxyyx22222(4)物理方程(6-4)0,0zxyzzvvvvEE1,1121xyxyyxzxyyyxxEEEE1111)1(2)()(1)(17.平面应力(1)平衡微分方程(6-8)00xzyzz)ρ0)ρ022y22tvFyxtuFyxyxyxyxx(((2)几何方程(6-9)yuxvyvxuxyyx(3)应变协调方程(6-10)yxxyxyyx22222(4)物理方程(6-11)0,0zxyzzxyxyxyyyxxEvvEvE)1(2)(1)(17.极坐标(1)极坐标vs直角坐标)()(2-7arctan,1-7sin,cos22xyyxyx(2)平衡微分方程02101ff(7-3)(3)几何方程uuuuuu11(7-4)(4)物理方程EvGvEvE12111(7-5)(4)协调方程011222222)((7-6)022U222222222211yx(5)应力表达式)1(11112222222UUUUUU(7-7)(6)应力分量的坐标转换式)sin(coscossin)(,cossin2cossin,cossin2sincos222222xyxyxyyxxyyx)sin(coscossin)(,cossin2cossin,cossin2sincos222222xyyx(7)轴对称问题:①应力函数DCBAU22lnlnρ②应力分量02)ln23(2)ln21(12222CBAdUdCBAddU(7-9)③位移分量(7-10)sincos4sincos121ln123111KIHEBuKICvBvBAEu