响应面法和实验设计软件Minitab-及-Design-Expert简介

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

响应面法和实验设计软件Minitab、Design-Expert简介1.响应面法2.实验设计软件Minitab3.实验设计软件Design-Expert响应曲面设计方法(ResponseSurfaceMethodology,RSM)是利用合理的试验设计方法并通过实验得到一定数据,采用多元二次回归方程来拟合因素与响应值之间的函数关系,通过对回归方程的分析来寻求最优工艺参数,解决多变量问题的一种统计方法。它囊括了试验设计、建模、检验模型的合适性、寻求最佳组合条件等众多试验和计技术;通过对过程的回归拟合和响应曲面、等高线的绘制、可方便地求出相应于各因素水平的响应值。在各因素水平的响应值的基础上,可以找出预测的响应最优值以及相应的实验条件。响应面优化法简介1响应面法响应面优化法的优点•响应面优化法,考虑了试验随机误差;同时,响应面法将复杂的未知的函数关系在小区域内用简单的一次或二次多项式模型来拟合,计算比较简便,是解决实际问题的有效手段。•所获得的预测模型是连续的,与正交实验相比,其优势是:在实验条件寻优过程中,可以连续的对实验的各个水平进行分析,而正交实验只能对一个个孤立的实验点进行分析。响应面优化法的不足•响应面优化的前提是:设计的实验点应包括最佳的实验条件,如果实验点的选取不当,使用响应面优化法是不能得到很好的优化结果的。因而,在使用响应面优化法之前,应当确立合理的实验的各因素与水平。确信或怀疑因素对指标存在非线性影响;因素个数2-7个,一般不超过4个;所有因素均为计量值数据;试验区域已接近最优区域;基于2水平的全因子正交试验。响应面法的适用范围中心复合试验设计(centralcompositedesign,CCD);Box-Behnken试验设计;响应面法的分类中心复合试验设计中心复合试验设计也称为星点设计。其设计表是在两水平析因设计的基础上加上极值点和中心点构成的,通常实验表是以代码的形式编排的,实验时再转化为实际操作值,(一般水平取值为0,±1,±α,其中0为中值,α为极值,α=F*(1/4)Box-BehnkenDesignBox-BehnkenDesign,简称BBD,也是响应面优化法常用的实验设计方法,其设计表安排以三因素为例(三因素用A、B、C表示),见下页表,其中0是中心点,+,-分别是相应的高值和低值。1.确定因素及水平,注意水平数为2,因素数一般不超过4个,因素均为计量数据;2.创建“中心复合”或“Box-Behnken”设计;3.确定试验运行顺序(DisplayDesign);4.进行试验并收集数据;5.分析试验数据;6.优化因素的设置水平。响应面法的实验设计一般步骤立方点轴向点中心点区组序贯试验旋转性基本概念2中心复合试验设计立方点(cubepoint)立方点,也称立方体点、角点,即2水平对应的“-1”和“+1”点。各点坐标皆为+1或-1。在k个因素的情况下,共有2k个立方点轴向点(axialpoint)轴向点,又称始点、星号点,分布在轴向上。除一个坐标为+α或-α外,其余坐标皆为0。在k个因素的情况下,共有2k个轴向点。中心点(centerpoint)中心点,亦即设计中心,表示在图上,坐标皆为0。三因素下的立方点、轴向点和中心点区组(block)也叫块。设计包含正交模块,正交模块可以允许独立评估模型中的各项及模块影响,并使误差最小化。但由于把区组也作为一个因素来安排,增加了分析的复杂程度。序贯试验(顺序试验)先后分几段完成试验,前次试验设计的点上做过的试验结果,在后续的试验设计中继续有用。旋转性(rotatable)设计旋转设计具有在设计中心等距点上预测方差恒定的性质,这改善了预测精度。α的选取在α的选取上可以有多种出发点,旋转性是个很有意义的考虑。在k个因素的情况下,应取α=2k/4当k=2,α=1.414;当k=3,α=1.682;当k=4,α=2.000;当k=5,α=2.378按上述公式选定的α值来安排中心复合试验设计(CCD)是最典型的情形,它可以实现试验的序贯性,这种CCD设计特称中心复合序贯设计(centralcompositecircumscribeddesign,CCC),它是CCD中最常用的一种。如果要求进行CCD设计,但又希望试验水平安排不超过立方体边界,可以将轴向点设置为+1及-1,则计算机会自动将原CCD缩小到整个立方体内,这种设计也称为中心复合有界设计(centralcompositeinscribeddesign,CCI)。这种设计失去了序贯性,前一次在立方点上已经做过的试验结果,在后续的CCI设计中不能继续使用。对于α值选取的另一个出发点也是有意义的,就是取α=1,这意味着将轴向点设在立方体的表面上,同时不改变原来立方体点的设置,这样的设计称为中心复合表面设计(centralcompositeface-centereddesign,CCF)。这样做,每个因素的取值水平只有3个(-1,0,1),而一般的CCD设计,因素的水平是5个(-α,-1,0,1,α),这在更换水平较困难的情况下是有意义的。这种设计失去了旋转性。但保留了序贯性,即前一次在立方点上已经做过的试验结果,在后续的CCF设计中可以继续使用,可以在二阶回归中采用。中心点的个数选择在满足旋转性的前提下,如果适当选择Nc,则可以使整个试验区域内的预测值都有一致均匀精度(uniformprecision)。见下表:•但有时认为,这样做的试验次数多,代价太大,Nc其实取2以上也可以;如果中心点的选取主要是为了估计试验误差,Nc取4以上也够了。•总之,当时间和资源条件都允许时,应尽可能按推荐的Nc个数去安排试验,设计结果和推测出的最佳点都比较可信。实在需要减少试验次数时,中心点至少也要2-5次。Box-Behnken试验设计将各试验点取在立方体棱的中点上在因素相同时,比中心复合设计的试验次数少;没有将所有试验因素同时安排为高水平的试验组合,对某些有安全要求或特别需求的试验尤为适用;具有近似旋转性,没有序贯性。特点ABCABCABCABC1-1-1-1-0.6-0.6-0.6-1-1-1-1-1021-1-10.6-0.6-0.61-1-11-103-11-1-0.60.6-0.6-11-1-110411-10.60.6-0.611-11105-1-11-0.6-0.60.6-1-11-10-161-110.6-0.60.61-1110-17-111-0.60.60.6-111-10181110.60.60.61111019-1.6800-100-1000-1-1101.680010010001-1110-1.6800-100-100-111201.6800100100111300-1.6800-100-100014001.68001001000150000000000001600000000017000000000180000000001900000000020000000000三因子4种响应曲面设计实验点计划表CCDCCICCFBB1.拟合选定模型;2.分析模型的有效性:P值、R2及R2(adj)、s值、失拟分析、残差图等;3.如果模型需要改进,重复1-3步;4.对选定模型分析解释:等高线图、曲面图;5.求解最佳点的因素水平及最佳值;6.进行验证试验。分析响应曲面设计的一般步骤1.响应面法2.实验设计软件Minitab3.实验设计软件Design-Expert2Minitab软件简介Minitab软件是现代质量管理统计的领先者,全球六西格玛实施的共同语言,以无可比拟的强大功能和简易的可视化操作深受广大质量学者和统计专家的青睐。Minitab1972年成立于美国的宾夕法尼亚州州立大学(PennsylvaniaStateUniversity),到目前为止,已经在全球100多个国家,4800多所高校被广泛使用。Minitab中响应面法的应用简介全因子中心复合试验(无区组)1/2实施中心复合试验(无区组)试验因素数试验总次数工作表数据是编码值输入高低水平的实际值选入A、B、C三个因素编码值与实际值选择编码值选择线性回归分析响应曲面设计SourceDFSeqSSAdjSSAdjMSFPRegression37.7897.7892.59621.080.387Linear37.7897.7892.59621.080.387ResidualError1638.59738.5972.4123Lack-of-Fit1136.05736.0573.27796.450.026PureError52.5402.5400.5079Total1946.385S=1.553R-Sq=16.8%R-Sq(adj)=1.2%输出结果:线性回归方差分析表此值很小说明线性回归效果不好此值小于0.05时表示线性回归模型不正确此值大于0.05时表示回归的效果不显著线性回归结果SourceDFSeqSSAdjSSAdjMSFPRegression936.46536.4654.05174.080.019Linear37.7897.7892.59622.620.109Square313.38613.3864.46194.500.030Interaction315.29115.2915.09705.140.021ResidualError109.9209.9200.9920Lack-of-Fit57.3807.3801.47602.910.133PureError52.5402.5400.5079Total1946.385S=0.9960R-Sq=78.6%R-Sq(adj)=59.4%此值较大,说明二次多项式回归效果比较好。此值大于0.05,表示二次多项式回归模型正确。此值小于0.05的项显著有效,回归的整体、二次项和交叉乘积项都显著有效,但是一次项的效果不显著。输出结果:二次多项式回归方差分析表非线性回归结果TermCoef(coded)SECoefTPCoef(uncoded)Constant10.46230.406225.7560.00012.4512A-0.57380.2695-2.1290.0590.9626B0.18340.26950.6800.512-2.2841C0.45550.26951.6900.122-1.4794A*A-0.67640.2624-2.5780.027-0.2676B*B0.56280.26242.1450.0581.1164C*C-0.27340.2624-1.0420.322-0.2388A*B-0.67750.3521-1.9240.083-0.6001A*C1.18250.35213.3580.0070.6951B*C0.23250.35210.6600.5240.3060输出结果:二次多项式回归系数及显著性检验对因素实际值的回归系数P值大的项不显著对编码值的回归系数TermCoef(coded)SECoefTPCoef(uncoded)Constant10.23860.337930.3030.00012.6189A-0.57380.2641-2.1730.0510.8848B0.18340.26410.6940.501-1.7352C0.45550.26411.7250.110-2.0904A*A-0.64930.2558-2.5380.026-0.2568B*B0.58990.25582.3060.0401.1702A*B-0.67750.3450-1.9640.073-0.6001A*C1.18250.34503.4270.0050.6951输出结果:剔除C×C和B×C后二次多项式回归系数及显著性检验这两个二次项回归系数有很小的改变,这是由于旋转设计只具有近似正交性目标是最大值下限设为10目标值设为20指标最优化因子最优水平值最优预测值在研究大豆产量Y的试验中,考虑氮肥A、磷肥B、钾肥C这三种肥料的施肥量。每个因素取两个基本水平,采用中心复合试验,其中:氮肥的编码

1 / 66
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功