主讲老师:一、知识结构:任意角与弧度制:单位圆任意角的三角函数三角函数线;三角函数的图象和性质三角函数线模型的简单应用同角三角函数的基本关系式诱导公式1.角的概念的推广:二、知识要点:1.角的概念的推广:(1)正角、负角、零角的概念:二、知识要点:1.角的概念的推广:(1)正角、负角、零角的概念:(2)终边相同的角:二、知识要点:1.角的概念的推广:(1)正角、负角、零角的概念:(2)终边相同的角:所有与角终边相同的角,连同角在内,可构成一个集合:二、知识要点:1.角的概念的推广:(1)正角、负角、零角的概念:(2)终边相同的角:所有与角终边相同的角,连同角在内,可构成一个集合:}Z,360|{kkS二、知识要点:①象限角的集合:1.角的概念的推广:二、知识要点:①象限角的集合:第一象限角集合为:;第二象限角集合为:;第三象限角集合为:;第四象限角集合为:;1.角的概念的推广:二、知识要点:②轴线角的集合:1.角的概念的推广:二、知识要点:②轴线角的集合:终边在x轴非负半轴角的集合为:;终边在x轴非正半轴角的集合为:;故终边在x轴上角的集合为:;终边在y轴非负半轴角的集合为:;故终边在y轴上角的集合为:;终边在y轴非正半轴角的集合为:;终边在坐标轴上的角的集合为:.1.角的概念的推广:二、知识要点:2.弧度制:二、知识要点:2.弧度制:我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下,1弧度记做1rad.二、知识要点:2.弧度制:(1)角度与弧度之间的转换:二、知识要点:2.弧度制:(1)角度与弧度之间的转换:①将角度化为弧度:二、知识要点:2.弧度制:(1)角度与弧度之间的转换:①将角度化为弧度:二、知识要点:2.弧度制:(1)角度与弧度之间的转换:①将角度化为弧度:二、知识要点:2.弧度制:(1)角度与弧度之间的转换:①将角度化为弧度:二、知识要点:②将弧度化为角度:2.弧度制:(1)角度与弧度之间的转换:二、知识要点:②将弧度化为角度:2.弧度制:(1)角度与弧度之间的转换:二、知识要点:②将弧度化为角度:2.弧度制:(1)角度与弧度之间的转换:二、知识要点:②将弧度化为角度:2.弧度制:(1)角度与弧度之间的转换:二、知识要点:(2)把上述象限角和轴线角用弧度表示.2.弧度制:二、知识要点:(2)把上述象限角和轴线角用弧度表示.2.弧度制:二、知识要点:(3)上述象限角和轴线角用弧度表示:(2)把上述象限角和轴线角用弧度表示.(3)上述象限角和轴线角用弧度表示:;rl弧长公式:2.弧度制:二、知识要点:(2)把上述象限角和轴线角用弧度表示.;rl弧长公式:.21lRS扇形面积公式:2.弧度制:二、知识要点:(3)上述象限角和轴线角用弧度表示:3.任意角的三角函数:二、知识要点:3.任意角的三角函数:二、知识要点:3.任意角的三角函数:二、知识要点:①3.任意角的三角函数:二、知识要点:②①3.任意角的三角函数:二、知识要点:②①③(2)判断各三角函数在各象限的符号:3.任意角的三角函数:二、知识要点:(2)判断各三角函数在各象限的符号:(3)三角函数线:3.任意角的三角函数:二、知识要点:4.同角三角函数基本关系式:二、知识要点:4.同角三角函数基本关系式:(1)平方关系:二、知识要点:4.同角三角函数基本关系式:(1)平方关系:1cossin22二、知识要点:4.同角三角函数基本关系式:(1)平方关系:1cossin22(2)商数关系:二、知识要点:4.同角三角函数基本关系式:(1)平方关系:1cossin22(2)商数关系:cossintan二、知识要点:5.诱导公式诱导公式(一))Z(tan)2tan()Z(cos)2cos()Z(sin)2sin(kkkkkk二、知识要点:诱导公式(二)tan)tan(cos)cos(sin)sin(5.诱导公式二、知识要点:诱导公式(三)tan)tan(cos)cos(sin)sin(5.诱导公式二、知识要点:诱导公式(四)sin(-)=sincos(-)=-costan(-)=-tan5.诱导公式二、知识要点:诱导公式(五)tan)2tan(cos)2cos(sin)2sin(5.诱导公式二、知识要点:可以是任意角;公式中的.1对于五组诱导公式的理解:5.诱导公式二、知识要点:可以是任意角;公式中的.1对于五组诱导公式的理解:.360,180,180,,)Z(360.2符号看成锐角时原函数值的把前面加上一个它的同名三角函数值,于等的三角函数值,括为:这五组诱导公式可以概kk5.诱导公式二、知识要点:可以是任意角;公式中的.1对于五组诱导公式的理解:.360,180,180,,)Z(360.2符号看成锐角时原函数值的把前面加上一个它的同名三角函数值,于等的三角函数值,括为:这五组诱导公式可以概kk函数名不变,符号看象限5.诱导公式二、知识要点:3.利用诱导公式将任意角三角函数转化为锐角三角函数的基本步骤:5.诱导公式二、知识要点:诱导公式二或四或五3.利用诱导公式将任意角三角函数转化为锐角三角函数的基本步骤:诱导公式三或一任意负角的三角函数任意正角的三角函数0o到360o角的三角函数锐角的三角函数诱导公式一5.诱导公式二、知识要点:三、基础训练:)(sin],2,[,23)(cos.1的值为则且已知23D.21C.21-B.21A.23D.23C.21-B.21A.)()647(-cos.2的值为三、基础训练:.__________)3cos(,tan)3tan(,101-)sin(3.3则且若三、基础训练:.__________)3cos(,tan)3tan(,101-)sin(3.3则且若._______)tan()cos(-)sin(.4化简:三、基础训练:)(cottan,32cossin.5的值是则已知518-D.45C.49B.185A.三、基础训练:._____cossin,83cossin.6象限角,则是第三且已知三、基础训练:四、典型例题:.),360,360(),2,2()2(_____630(1)中绝对值最小的角,并求出的集合试写出角并且的终边经过点若角象限角;是第角,则后成为角按顺时针方向旋转边在是第二象限角,当其终若AAP例1.例2..,30125(2)___,43tan___,34cos___,3sin(1)2求扇形的弧长和半径长面积为弧度,已知扇形的圆心角为计算:cm四、典型例题:例3.化简:设Z,k.])1cos[(])1sin[()cos()sin(kkkk四、典型例题:课堂小结1.任意角的三角函数;2.同角三角函数的关系;3.诱导公式.课后作业1.阅读教材P.67-P.68;2.《习案》作业十六中1至6题.