电路 第五版邱关源第九章 正选稳态电路的分析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2020/2/2312020/2/231第9章正弦交流电路的分析9.1阻抗和导纳电路的相量图正弦稳态电路的分析正弦稳态电路的功率复功率最大功率传输9.29.39.49.59.62020/2/2322020/2/2322.正弦稳态电路的分析;3.有功功率、无功功率概念和计算;1.阻抗和导纳;4.功率因数提高。重点:难点:功率的概念和计算。2020/2/2332020/2/233进一步想,由已知之点想到其它2020/2/2342020/2/234正弦稳态电路的分析直流电阻电路与正弦电流电路的分析依据比较:GuiRiuui0:KVL0:KCL或:元件约束关系:电阻电路0:KVL0:KCLUYIIZUUI或:元件约束关系:电路相量分析正弦稳态R(电阻)→Z(阻抗)i→u→IU2020/2/2352020/2/2351.(复)阻抗正弦稳态情况zφZjXRIUZ||defiuzIUZ阻抗模阻抗角XR等效电阻等效电抗Z是一个复数,不是正弦量,上面不能加点。9.1阻抗和导纳IZU+_欧姆定律的相量形式|Z|RXz阻抗三角形无源线性网络+_IU2020/2/2362020/2/236电路性质称电路为感性电路,即电压超前电流。jXRZ0X0Z,即0X0Z,即0X0Z,即称电路为容性电路,即电压滞后电流。称电路为电阻性电路,即电压电流同相位。2020/2/2372020/2/237RIUZRCj11.阻抗IRU+_LjCj1②无源一端口的阻抗IUZzZXRjIUZLLjIUZCCLRj1jIU+_IU+__LCRuuLuCi++++uR___LjUR++++____RULUCUICj12020/2/2382020/2/238③分析RLC串联电路等效电路1.阻抗R=0取等号IU超前L1/C,X0,0z≤90°,Z为感性阻抗,一端口呈感性)1(jCLRZLjUR++++____RULUCUICj1jLeqXUR++RU+___UI2020/2/2392020/2/2391.阻抗一般选电流为参考向量ICURULUUz电压三角形XU2222)(CLRXRUUUUUUa.L1/C,X0,0z≤90°超前一端口呈感性UI)1(jCLRZLjUR++++____RULUCUICj1jXXUR++RU+___UI2020/2/23102020/2/2310等效电路1.阻抗b.L1/C,X0,-90°≤z0,滞后,Z为容性阻抗,一端口呈容性IUR=0取等号IRUCULUUzXU2222)(LCRXRUUUUUU)1(jCLRZLjUR++++____RULUCUICj1_R++RU+__UXUeqCj1I2020/2/23112020/2/2311等效电路IRULUCU1.阻抗d.ωL=1/C,X=0,z=0,、同相,一端口呈电阻性IURIU+_+_RUU)1(jCLRZLjUR++++____RULUCUICj12020/2/23122020/2/23121.假设R、L、C已定,电路性质能否确定?cos2.RLC串联电路的是否一定小于1?U,UR?UUU,UCL3.RLC串联电路中是否会出现4.在RLC串联电路中,当LC时,u超前i,当LC时,u滞后i,这样分析对吗?R+-+-+-+-.IjLULUCU.Cj1RU2020/2/23132020/2/23132.(复)导纳S||YφYUIY定义导纳正弦稳态情况IYU+_无源线性网络+_IUuiYSUIY导纳模导纳角BG等效电导等效电纳阻抗与导纳互为倒数ZY1|Y|GBY导纳三角形BGj2020/2/23142020/2/23143.(复)阻抗和(复)导纳阻抗与导纳互为倒数BGYXRXRXRZj22jj11zyφφZY,||1||2020/2/23152020/2/2315注意①一端口N0的阻抗或导纳是由其内部的参数、结构和正弦电源的频率决定的;②一端口N0中如不含受控源,则有90||z或90||y但有受控源时,可能会出现90||z或90||y2020/2/23162020/2/23162.导纳UIYYYBGjLYj1CLRjj11)1(j1LCRIU+_Cj1IU+_LjI+_URCj1LjIRU+_RUIY1CUIYj2020/2/23172020/2/2317等效电路2.导纳C1/L,B0,-90°≤Y0,滞后,Y为感性导纳,一端口呈感性IUUGILIYICI)1(j1LCRYI+_URCj1LjGILICII+_URGIBIeqLj2020/2/23182020/2/2318③分析RLC并联电路等效电路2.导纳UI超前C1/L,B0,0Y≤90°,Y为容性导纳,一端口呈容性)1(j1LCRYI+_URCj1LjI+_UReqCj1GIBI2020/2/23192020/2/2319等效电路UGICILIωC=1/L,B=0,Y=0,、同相,一端口呈电阻性IUI2.导纳)1(j1LCRYI+_URCj1LjRIU+_+_RU2020/2/23202020/2/23204.阻抗(导纳)的串联和并联①阻抗的串联串联阻抗相加IZU+_LjUR++++____RULUCUICj1IUZCLRj1j2020/2/23212020/2/23214.阻抗(导纳)的串联和并联ZIZZZIUUUUnn)(2121串联分压如何计算?nkkZZ1①阻抗的串联Z1Z2ZnIU+_串联阻抗相加IZU+_2020/2/23222020/2/2322例V)60cos(2220tu)2j1(1Z)3j2(2Z)4j3(3Z所示电路中,,。求、,各瞬时值表达式。等效阻抗为:31.56817.109j64j33j22j1321ZZZZ解V82.56695.101)4j3(69.3339.20V60333.73)3j2(69.3339.20V125.67479.45)2j1(69.3339.20A69.3339.2031.56817.1060220332211ZIUZIUZIUZUI2020/2/23232020/2/2323V82.56695.101)4j3(69.3339.20V60333.73)3j2(69.3339.20V125.67479.45)2j1(69.3339.20A69.3339.2031.56817.1060220332211ZIUZIUZIUZUI各瞬时值表达式为:A)69.3cos(2339.20tiV)125.67cos(2479.451tuV)60cos(2333.732tuV)82.56cos(2695.1013tu2020/2/23242020/2/2324②导纳的并联4.阻抗(导纳)的串联和并联并联导纳相加IYU+_I+_UReqCj1GIBIUIYCLRjj112020/2/23252020/2/2325nkkYY1②导纳的并联YUYYYUIIIInn)(21214.阻抗(导纳)的串联和并联Y1Y2YnIU+_并联导纳相加IYU+_并联分流如何计算?2020/2/23262020/2/2326例电路如图所示,已知)375cos(2100ti求解各支路电流。A,解等效导纳SjjY037121101201151等效阻抗037121YZ端电压相量000012037123710IZUUIRICILI1510j20j2020/2/23272020/2/2327A080RUIRA90120LjUILA90610CjUIC各支路电流为A)5cos(28tiRA)905cos(2120tiLA)905cos(2120tiCUIRICILI1510j20j2020/2/23282020/2/2328例图示电路对外呈现感性还是容性?解等效阻抗为:电路对外呈现容性)4j3(5)4j3(56j3Z75.4j5.526.5794.813.53256j333-j6j452020/2/23292020/2/2329例图为RC选频网络,求u1和u0同相位的条件及?01UU解1212UZZZUo2122111ZZZZZUUo实数CRCRZZ2221)1(j2CR13211oUU-R-++Ruou1Cj1Cj1CjRZ11CjRZ1//22020/2/23302020/2/2330ABC1V5Ω1I2Ij10ΩAj5ΩI求:A、V的读数已知:I1=10A、UAB=100V,R2020/2/23312020/2/23319.2电路的相量图把一个电路中的电压、电流相量画在同一个复平面上得到的图形,即为电路的相量图能直观的显示各相量的相位关系,辅助电路分析意义:一般画法:串联电路:以电流为参考相量并联电路:以电压为参考相量2020/2/23322020/2/2332用相量图分析oo0~180为移相角,移相范围θ例移相桥电路。当R2由0时,如何变化?abU解;21,ab2相位改变不变,改变当由相量图可知,UUR当R2=0,q180;当R2,q0。121212,UUUUUUUUUUUURabCRab1U2UCUCIR2R1R1+_UabU+-+-+-RU+-U1UCUCICUCI2URURUqabUqabUabb2020/2/23332020/2/23339.3正弦稳态电路的分析电阻电路0i0I正弦电流电路(时域形式)(相量形式)RiuIZUKCL:KVL:VCR:UYIGui0u0U形式完全一致①电阻电路和正弦电流电路的依据是相似的。②直接列写相量形式的复代数方程。2020/2/23342020/2/2334例画出电路的相量模型7.175.1049901047.31847.318j1000)47.318j(10001j)1j(3111CRCRZ,rad/s314,V100,μF10,mH500,10,100021UCLRR求:各支路电流。已知:解R2+_Li1i2i3R1CuZ1Z2U1I2I3ICj1LjR2+_R12020/2/23352020/2/2335157j10j22LRZ3.5299.16613.132j11.102157j1013.289j1

1 / 81
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功