第12章 动载荷与动应力-2013

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2020/3/1材料力学1第12章动载荷与动应力12.1惯性载荷作用下的动应力12.2冲击应力12.3振动应力2020/3/1材料力学212.1惯性载荷作用下的动应力一.静载荷与动载荷1.静载荷:载荷值由零开始,缓慢增加,到一定数值后不再变化或变化很小。特点:加载过程中结构内任意点加速度近似为零,即结构时刻保持平衡。在此之前所研究的载荷都是静载荷。2020/3/1材料力学32.动载荷:引起构件产生明显加速度的荷载。直线变速提升重物:FN=PFNP!2020/3/1材料力学4匀速转动圆环:FNdFNd飞轮的制动:2.动载荷:2020/3/1材料力学5绕轴匀速转动的直杆:FNd自由落体冲击梁:2.动载荷:2020/3/1材料力学63.动荷响应的特点(1)构件各部分有明显的加速度;不平衡,内力难以用静力平衡方程计算。(2)材料的力学性质与静荷载作用不同。一般可用应变率来区分静荷载与动荷载:5110~101/s静荷载:动荷载:1810~101/s2020/3/1材料力学74.假设:(1)当动应力dp时,虎克定律仍然成立,且E,G与静荷载作用时相同;(2)材料的力学性质,如强度指标s,b等,仍可采用静荷载作用时的数值。这样的假设是偏于安全。2020/3/1材料力学85.四类动载荷问题(1)惯性载荷:一般变速运动构件包括:匀加速直线运动和等角速转动;加速度可求,用动静法解。(2)冲击载荷:构件受剧烈变化力的作用加速度不易求,材料的力学性质变化较大;用能量法简化求解。(3)振动载荷:(4)交变载荷:(下一章讨论)应力作周期变化。2020/3/1材料力学912.1惯性载荷作用下的动应力1.特点:加速度可求形式:直线变速运动构件,等速转动构件。2.惯性力○Fma大小:ma方向:与加速度a相反惯性力Fg=-mama圆周运动Rvm2mvRF2020/3/1材料力学103.达朗伯原理在运动物体上假想地加上惯性力,则惯性力与主动力、约束力在形式上组成平衡力系。○Fma○Fmma4.动静法运用达朗伯原理,将动力学问题在形式上转化为静力学问题。不平衡平衡加惯性力2020/3/1材料力学1112.1.1直线变速运动构件的动应力轴力:N0,0yPFFPagN(1)aFPg记d1akg动荷系数则FN=kdP2020/3/1材料力学1212.1.1直线变速运动构件的动应力FN=kdP即钢索以加速度a起吊重量为P的物体时所受的力,与静止吊着重量为kdP的物体所受的轴力相当。相当静载:Pd=kdP动应力:d=kdst动变形:d=kdst强度条件:d=kdst[]2020/3/1材料力学13一水平放置的匀质混凝土预制梁,由起重机以匀加速度a向上提升,已知梁的长度为l,横截面面积为A,抗弯截面系数为W,材料的质量密度为。试求:(1)起吊力F;(2)梁横截面上的最大弯矩Mmax。解:(1)确定动荷系数横梁作匀加速提升,动荷系数:d1akg(2)计算起吊力静荷起吊力等于梁的自重,即stFAlg例1所以,动荷起吊力dst(1)aFkFAlgg2020/3/1材料力学14(3)计算最大弯矩梁单位长度重力qAg作出弯矩图,得最大静荷弯矩22stmax4040qlAglM最大动荷弯矩2dmaxdstmax(1)40aAglMkMg例12020/3/1材料力学1512.2.2等速转动构件的动应力薄环:环厚平均直径D向心加速度:22nDa单位长度惯性力:2d2DqA单位体积质量:横截面面积:A单位长度质量:A2020/3/1材料力学1612.2.2等速转动构件的动应力动应变:周向线应变1dπππDDDDD222d4DvEEE强度条件:222d4Dv直径改变量:3224DDvDEE与(或v)有关动轴力:22dN24qDADF动应力:222Nd4FDvA平衡方程:Fy=0,-2FN+qdD=0与A无关v极限速度(转速)2020/3/1材料力学1712.2冲击应力一、冲击现象PPP冲击作用时间很短10-6~10-3秒。由于冲击载荷的变化规律难以精确掌握,因此常采用能量转化及守恒定律求近似解。冲击物被冲击物冲击物冲击物2020/3/1材料力学18二、假设:1.冲击物的变形很小,可以忽略不计,即视为刚体,并且从冲击开始到产生最大位移的整个过程中,冲击物与被冲击物一起运动,不发生分离。不吸收变形能2.忽略被冲击物的质量,认为冲击载荷引起的应力和变形,在冲击瞬时遍及被冲击物,被冲击物仍处于线弹性范围内,并且无反弹。不计被冲击物的动能和势能3.忽略其它能量损失,如接触区局部塑性变形的能量损失、发热、发声等,只有位能、动能和应变能的转化。机械能守恒定律仍然成立动能T,势能V,变形能U任意时刻有:T+V+U=常数2020/3/1材料力学19PhEId初初时刻:T1=0,V1=P(h+d),U1=0末时刻:T2=0,V2=0,U2=Pdd/2末Pd12.2.1.自由落体冲击应力和变形2020/3/1材料力学20T1+V1+U1=T2+V2+U2P(h+d)=Pdd/2ddPkP令则ddddstPkPkP(h+kdst)=kdPkdst/22stdstd220kkhst:将冲击物重量当作静载加到冲击点引起的冲击点位移冲击动荷系数12.2.1.自由落体冲击应力和变形2020/3/1材料力学21dst211hk其解为:取正号:dst211hk2stdstd220kkhh:冲击高度st:将冲击物重量按静载方式加到冲击点引起该点相应位移。三.自由落体冲击应力和变形自由落体冲击动荷系数2020/3/1材料力学22研究最大动应力和最大动变形时,可转化为等效静荷问题求解。关键:求kd。PEIstdPhEI原冲击问题EIPdd等效静荷问题Pd=kdP三.自由落体冲击应力和变形2020/3/1材料力学23类似问题三.自由落体冲击应力和变形2020/3/1材料力学2412.2.1.自由落体冲击应力和变形讨论:(1)如果冲击物作为突加载荷作用在梁上,此时h=0,得到kd=2,即突加载荷作用力是静载荷作用的两倍。(2)如果自由落体时,已知的不是冲击物的高度,而是冲击物在冲击时的速度,则根据自由落体公式v2=2gh,得到(3)自由落体时,若己知的是冲击物冲击时的初动能,则根据动能表达式T=Wv2/(2g),得到2dst11vkgdst211hk自由落体冲击动荷系数dst211TkW2020/3/1材料力学25钢制圆截面杆上端固定,下端固连一无重刚性托盘以承接落下的环形重物。已知杆的长度l=2m,直径d=30mm,弹性模量E=200GPa。若环形重物的重力P=500N,自高度h=50mm处自由落下,使杆受到冲击。求下列两种情况下,杆的动应力:(1)重物直接落在刚性托盘上;(2)托盘上放一刚度系数k=1MN/m的弹簧,环形重物落在弹簧上。解:(1)环形重物直接落在刚性托盘上冲击点沿冲击方向的静荷位移6st12950027.07410mπ0.03200104PlEA例22020/3/1材料力学26动荷系数:d1st621120.05111207.07410hk静荷应力:st125000.7074MPaπ0.034PA动应力:d1d1st11200.7074=84.9MPak例22020/3/1材料力学27(2)环形重物落在弹簧上此时,冲击点沿冲击方向的静荷位移为杆的静荷轴向伸长与弹簧静荷变形之和,有st22695002500π0.03110200104PlPEAk6667.07410+50010=507.07410m动荷系数:d26st2220.05111115.08507.07410hk例2动应力:d2d2st215.080.7074=10.7MPak2020/3/1材料力学28讨论:◆弹簧起到了缓冲作用,使冲击载荷大大减小。◆动荷因数中的st是冲击物的重力以静荷方式作用于构件冲击点时,所引起的构件冲击点沿冲击方向的静位移。这一点在应用时需要特别注意。例2d1d284.9MPa=10.7MPa2020/3/1材料力学29dst12.2.2.水平冲击2020/3/1材料力学30初:T2=0,V2=0,U2=Pdd/2st212vgPTV1=0,U1=0末:记Pd=kdPd=kdst22dst122PvkPg2dstvkg能量守恒:T1+V1+U1=T2+V2+U2初d末12.2.2.水平冲击2020/3/1材料力学31初末v初:211dst2PTvVPg1st12UP末:T2=0V2=02dd12UP能量守恒:T1+V1+U1=T2+V2+U22dststdd11222PvPPPg记Pd=kdPd=kdst2dst1vkg12.2.3.运动物体的突然制动(刹车)2020/3/1材料力学32图示外伸梁抗弯刚度为EI,抗弯截面模量为W。求梁内最大冲击正应力dmax。Ph2aaCAB解:(1)判断自由落体冲击问题,动荷系数可直接用公式计算。例32020/3/1材料力学33P2aaCAB(2)求st(单位力法,P272)MPa1CABaM例32020/3/1材料力学34P2aaCABMPaaM13st11212(2)2323PaaPaaaPaaEIEIa32a32例3P172表查得2020/3/1材料力学35P2aaCAB(4)求stmaxMPamaxstmaxMPaWW例3(3)求kddst211hk3211hEIPa3stPaEI(5)求dmaxdmaxdstmaxk32(11)hEIPaWPa2020/3/1材料力学3612.2.4、冲击韧度在冲击载荷作用下,材料的变形和破坏过程仍分为弹性变形、塑性变形和断裂破坏几个阶段。但材料的力学性能与静载时有明显的差别:–屈服点与静载时相比有较大的提高,–但塑性却明显下降,–材料产生明显的脆性倾向。为了衡量材料抵抗冲击的能力,工程上提出了冲击韧度的概念,它是由冲击试验确定的。2020/3/1材料力学37冲击试验:试样:截面1010mm2,长度55mm,中间开有切槽(缺口)。设备:摆锤式冲击试验机。过程:试样放在试验机两支承点上,摆锤从高度h1处自由落下,打击到试样上。将试样冲断后,摆锤摆到高度h2处。k12()WFhhkKWaA冲击韧度:单位:焦耳/米2(J/m2)F:摆锤重量A:切槽处横截面面积能量转换:摆锤减少的位能等于试样折断时吸收的功:2020/3/1材料力学38冲击试验:•aK越大,表明材料抵抗冲击的能力越强。•冲击韧度与材料的塑性有关,但又不同于塑性,是强度与塑性的综合表现。•一般地说,塑性材料的冲击韧度远高于脆性材料。•因此,冲击韧度也是材料的力学性能指标之一。•在工程实际中有时必须对冲击韧度做出要求。2020/3/1材料力学39冲击动荷系数自由落体冲击:水平冲击:紧急制动:12.2.5提高构件抗冲击能力的措施原则:降低kd、增加st(1)降低刚度。(2)避免构件局部削弱。(3)增大构件体积。2dstvkgdst211hk2dst1vkg2020/3/1材料力学40PPllEAPEAPll3333lEIPEIPlflGImGImlPP12.2.5提高构件抗冲击能力的措施2020/3/1材料力学41PlEAPEAPll3333lEIPEIPlflGImGImlPP弹性杆件可看作弹簧:12.2.5提高构件抗冲击能力

1 / 51
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功