第1面不等式的基本知识(一)不等式与不等关系1、应用不等式(组)表示不等关系;不等式的主要性质:(1)对称性:abba(2)传递性:cacbba,(3)加法法则:cbcaba;dbcadcba,(同向可加)(4)乘法法则:bcaccba0,;bcaccba0,bdacdcba0,0(同向同正可乘)(5)倒数法则:baabba110,(6)乘方法则:)1*(0nNnbabann且(7)开方法则:)1*(0nNnbabann且2、应用不等式的性质比较两个实数的大小:作差法(作差——变形——判断符号——结论)3、应用不等式性质证明不等式(二)解不等式1、一元二次不等式的解法一元二次不等式00022acbxaxcbxax或的解集:设相应的一元二次方程002acbxax的两根为2121xxxx且、,acb42,则不等式的解的各种情况如下表:000二次函数cbxaxy2(0a)的图象cbxaxy2cbxaxy2cbxaxy2一元二次方程的根002acbxax有两相异实根)(,2121xxxx有两相等实根abxx221无实根的解集)0(02acbxax21xxxxx或abxx2R第2面的解集)0(02acbxax21xxxx2、简单的一元高次不等式的解法:标根法:其步骤是:(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿过偶弹回;(3)根据曲线显现()fx的符号变化规律,写出不等式的解集。如:xxx1120233、分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。()()0()()0()()0;0()0()()fxgxfxfxfxgxgxgxgx4、不等式的恒成立问题:常应用函数方程思想和“分离变量法”转化为最值问题若不等式Axf在区间D上恒成立,则等价于在区间D上minfxA若不等式Bxf在区间D上恒成立,则等价于在区间D上maxfxB(三)线性规划1、用二元一次不等式(组)表示平面区域二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)2、二元一次不等式表示哪个平面区域的判断方法由于对在直线Ax+By+C=0同一侧的所有点(yx,),把它的坐标(yx,)代入Ax+By+C,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x0,y0),从Ax0+By0+C的正负即可判断Ax+By+C>0表示直线哪一侧的平面区域.(特殊地,当C≠0时,常把原点作为此特殊点)3、线性规划的有关概念:①线性约束条件:在上述问题中,不等式组是一组变量x、y的约束条件,这组约束条件都是关于x、y的一次不等式,故又称线性约束条件.②线性目标函数:关于x、y的一次式z=ax+by是欲达到最大值或最小值所涉及的变量x、y的解析式,叫线性目标函数.③线性规划问题:一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.④可行解、可行域和最优解:满足线性约束条件的解(x,y)叫可行解.由所有可行解组成的集合叫做可行域.使目标函数取得最大或最小值的可行解叫线性规划问题的最优解.第3面4、求线性目标函数在线性约束条件下的最优解的步骤:(1)寻找线性约束条件,列出线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)依据线性目标函数作参照直线ax+by=0,在可行域内平移参照直线求目标函数的最优解(四)基本不等式2abab1.若a,b∈R,则a2+b2≥2ab,当且仅当a=b时取等号.2.如果a,b是正数,那么).(2号时取当且仅当baabba变形:有:a+b≥ab2;ab≤22ba,当且仅当a=b时取等号.3.如果a,b∈R+,a·b=P(定值),当且仅当a=b时,a+b有最小值P2;如果a,b∈R+,且a+b=S(定值),当且仅当a=b时,ab有最大值42S.注:(1)当两个正数的积为定值时,可以求它们和的最小值,当两个正数的和为定值时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的重要条件“一正,二定,三取等”4.常用不等式有:(1)2222211abababab(根据目标不等式左右的运算结构选用);(2)a、b、cR,222abcabbcca(当且仅当abc时,取等号);(3)若0,0abm,则bbmaam(糖水的浓度问题)。不等式主要题型讲解(一)不等式与不等关系题型一:不等式的性质1.对于实数cba,,中,给出下列命题:①22,bcacba则若;②babcac则若,22;③22,0bababa则若;④baba11,0则若;⑤baabba则若,0;⑥baba则若,0;⑦bcbacabac则若,0;⑧11,abab若,则0,0ab。其中正确的命题是______题型二:比较大小(作差法、函数单调性、中间量比较,基本不等式)第4面(二)解不等式题型三:解不等式2.解不等式3.解不等式2(1)(2)0xx。4.解不等式25123xxx5.不等式2120axbx的解集为{x|-1<x<2},则a=_____,b=_______6.关于x的不等式0bax的解集为),1(,则关于x的不等式02xbax的解集为7.解关于x的不等式2(1)10axax题型四:恒成立问题8.关于x的不等式ax2+ax+1>0恒成立,则a的取值范围是_____________第5面9.若不等式22210xmxm对01x的所有实数x都成立,求m的取值范围.10.已知0,0xy且191xy,求使不等式xym恒成立的实数m的取值范围。(三)基本不等式2abab题型五:求最值11.(直接用)求下列函数的值域(1)y=3x2+12x2(2)y=x+1x12.(配凑项与系数)(1)已知54x,求函数14245yxx的最大值。(2)当时,求(82)yxx的最大值。第6面求函数2254xyx的值域。13.(条件不等式)(1)若实数满足2ba,则ba33的最小值是.(2)已知0,0xy,且191xy,求xy的最小值。(四)线性规划题型八:目标函数求最值14.满足不等式组0,087032yxyxyx,求目标函数yxk3的最大值