高考圆锥曲线之动弦过定点的问题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

题型三:动弦过定点的问题圆锥曲线自身有一些规律性的东西,其中一些性质是和直线与圆锥曲线相交的弦有关系,对这样的一些性质,我们必须了如指掌,并且必须会证明。随着几何画板的开发,实现了机器证明几何问题,好多以前我们不知道的、了解不深入的几何或代数性质,都如雨后春笋般的出来了,其中大部分都有可以遵循的规律,高考出题人,也得设计好思维,让我们在他们设好的路上“走”出来。下面我们就通过几个考题领略一下其风采。例题4、已知椭圆C:22221(0)xyabab的离心率为32,且在x轴上的顶点分别为A1(-2,0),A2(2,0)。(I)求椭圆的方程;(II)若直线:(2)lxtt与x轴交于点T,点P为直线l上异于点T的任一点,直线PA1,PA2分别与椭圆交于M、N点,试问直线MN是否通过椭圆的焦点?并证明你的结论。分析:第一问是待定系数法求轨迹方程;第二问中,点A1、A2的坐标都知道,可以设直线PA1、PA2的方程,直线PA1和椭圆交点是A1(-2,0)和M,通过韦达定理,可以求出点M的坐标,同理可以求出点N的坐标。动点P在直线:(2)lxtt上,相当于知道了点P的横坐标了,由直线PA1、PA2的方程可以求出P点的纵坐标,得到两条直线的斜率的关系,通过所求的M、N点的坐标,求出直线MN的方程,将交点的坐标代入,如果解出的t2,就可以了,否则就不存在。解:(I)由已知椭圆C的离心率32cea,2a,则得3,1cb。从而椭圆的方程为2214xy(II)设11(,)Mxy,22(,)Nxy,直线1AM的斜率为1k,则直线1AM的方程为1(2)ykx,由122(2)44ykxxy消y整理得222121(14)161640kxkxk12x和是方程的两个根,21121164214kxk则211212814kxk,1121414kyk,即点M的坐标为2112211284(,)1414kkkk,同理,设直线A2N的斜率为k2,则得点N的坐标为2222222824(,)1414kkkk12(2),(2)ppyktykt12122kkkkt,直线MN的方程为:121121yyyyxxxx,令y=0,得211212xyxyxyy,将点M、N的坐标代入,化简后得:4xt又2t,402t椭圆的焦点为(3,0)43t,即433t故当433t时,MN过椭圆的焦点。方法总结:本题由点A1(-2,0)的横坐标-2是方程222121(14)161640kxkxk的一个根,结合韦达定理运用同类坐标变换,得到点M的横坐标:211212814kxk,再利用直线A1M的方程通过同点的坐标变换,得点M的纵坐标:1121414kyk;其实由222(2)44ykxxy消y整理得222222(14)161640kxkxk,得到22222164214kxk,即222228214kxk,2222414kyk很快。不过如果看到:将21121164214kxk中的12kk用换下来,1x前的系数2用-2换下来,就得点N的坐标2222222824(,)1414kkkk,如果在解题时,能看到这一点,计算量将减少,这样真容易出错,但这样减少计算量。本题的关键是看到点P的双重身份:点P即在直线1AM上也在直线A2N上,进而得到12122kkkkt,由直线MN的方程121121yyyyxxxx得直线与x轴的交点,即横截距211212xyxyxyy,将点M、N的坐标代入,化简易得4xt,由43t解出433t,到此不要忘了考察433t是否满足2t。另外:也可以直接设P(t,y0),通过A1,A2的坐标写出直线PA1,PA2的直线方程,再分别和椭圆联立,通过韦达定理求出M、N的坐标,再写出直线MN的方程。再过点F,求出t值。例题5、(07山东理)已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3;最小值为1;(Ⅰ)求椭圆C的标准方程;(Ⅱ)若直线mkxyl:与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点。求证:直线l过定点,并求出该定点的坐标。分析:第一问,是待定系数法求椭圆的标准方程;第二问,直线mkxyl:与椭圆C相交于A,B两点,并且椭圆的右顶点和A、B的连线互相垂直,证明直线l过定点,就是通过垂直建立k、m的一次函数关系。解(I)由题意设椭圆的标准方程为22221(0)xyabab3,1acac,22,1,3acb22143xy(II)设1122(,),(,)AxyBxy,由223412ykxmxy得222(34)84(3)0kxmkxm,22226416(34)(3)0mkkm,22340km212122284(3),3434mkmxxxxkk(注意:这一步是同类坐标变换)22221212121223(4)()()()34mkyykxmkxmkxxmkxxmk(注意:这一步叫同点纵、横坐标间的变换)以AB为直径的圆过椭圆的右顶点(2,0),D且1ADBDkk,1212122yyxx,1212122()40yyxxxx,2222223(4)4(3)1640343434mkmmkkkk,2271640mmkk,解得1222,7kmkm,且满足22340km当2mk时,:(2)lykx,直线过定点(2,0),与已知矛盾;当27km时,2:()7lykx,直线过定点2(,0)7综上可知,直线l过定点,定点坐标为2(,0).7名师经验:在直线和圆锥曲线的位置关系题中,以弦为直径的圆经过某个点,就是“弦对定点张直角”,也就是定点和弦的两端点连线互相垂直,得斜率之积为1,建立等式。直线不过定点,也不知道斜率,设出mkxyl:,是经常用的一招,在第二讲中就遇到了这样设的直线。练习:直线mkxyl:和抛物线22ypx相交于A、B,以AB为直径的圆过抛物线的顶点,证明:直线mkxyl:过定点,并求定点的坐标。分析:以AB为直径的圆过抛物线的顶点O,则OAOB,若设1122(,),(,)AxyBxy,则12120xxyy,再通过2212121212()()()yykxmkxmkxxmkxxm,将条件转化为221212(1)()0kxxmkxxm,再通过直线和抛物线联立,计算判别式后,可以得到12xx,12xx,解出k、m的等式,就可以了。解:设1122(,),(,)AxyBxy,由22ykxmypx得,2220kypymp,(这里消x得到的)则2480pmkp………………(1)由韦达定理,得:121222pmpyyyykk,,则2121212122()ymymyymyymxxkkk,以AB为直径的圆过抛物线的顶点O,则OAOB,即12120xxyy,可得21212122()0yymyymyyk,则22(1)220kmppmmk,即2220kmpmk,又0mk,则2mkp,且使(1)成立,此时2(2)lykxmkxkpkxp:,直线恒过点(2,0)p。名师指点:这个题是课本上的很经典的题,例题5、(07山东理)就是在这个题的基础上,由出题人迁移得到的,解题思维都是一样的,因此只要能在平时,把我们腾飞学校老师讲解的内容理解透,在高考中考取140多分,应该不成问题。本题解决过程中,有一个消元技巧,就是直线和抛物线联立时,要消去一次项,计算量小一些,也运用了同类坐标变换——韦达定理,同点纵、横坐标变换-------直线方程的纵坐标表示横坐标。其实解析几何就这么点知识,你发现了吗?题型四:过已知曲线上定点的弦的问题若直线过的定点在已知曲线上,则过定点的直线的方程和曲线联立,转化为一元二次方程(或类一元二次方程),考察判断式后,韦达定理结合定点的坐标就可以求出另一端点的坐标,进而解决问题。下面我们就通过例题领略一下思维过程。例题6、已知点A、B、C是椭圆E:22221xyab(0)ab上的三点,其中点A(23,0)是椭圆的右顶点,直线BC过椭圆的中心O,且0ACBC,2BCAC,如图。(I)求点C的坐标及椭圆E的方程;(II)若椭圆E上存在两点P、Q,使得直线PC与直线QC关于直线3x对称,求直线PQ的斜率。解:(I)2BCAC,且BC过椭圆的中心OOCAC0ACBC2ACO又A(23,0)点C的坐标为(3,3)。A(23,0)是椭圆的右顶点,23a,则椭圆方程为:222112xyb将点C(3,3)代入方程,得24b,椭圆E的方程为221124xy(II)直线PC与直线QC关于直线3x对称,设直线PC的斜率为k,则直线QC的斜率为k,从而直线PC的方程为:3(3)ykx,即3(1)ykxk,由223(1)3120ykxkxy消y,整理得:222(13)63(1)91830kxkkxkk3x是方程的一个根,229183313Pkkxk即2291833(13)Pkkxk同理可得:2291833(13)Qkkxk3(1)3(1)PQPQyykxkkxk=()23PQkxxk=2123(13)kk2222918391833(13)3(13)PQkkkkxxkk=2363(13)kk13PQPQPQyykxx则直线PQ的斜率为定值13。方法总结:本题第二问中,由“直线PC与直线QC关于直线3x对称”得两直线的斜率互为相反数,设直线PC的斜率为k,就得直线QC的斜率为-k。利用3是方程222(13)63(1)91830kxkkxkk的根,易得点P的横坐标:2291833(13)Pkkxk,再将其中的k用-k换下来,就得到了点Q的横坐标:2291833(13)Qkkxk,这样计算量就减少了许多,在考场上就节省了大量的时间。接下来,如果分别利用直线PC、QC的方程通过坐标变换法将点P、Q的纵坐标也求出来,计算量会增加许多。直接计算PQyy、PQxx,就降低了计算量。总之,本题有两处是需要同学们好好想一想,如何解决此类问题,一是过曲线上的点的直线和曲线相交,点的坐标是方程组消元后得到的方程的根;二是利用直线的斜率互为相反数,减少计算量,达到节省时间的目的。练习1、已知椭圆C:22221(0)xyabab的离心率为32,且在x轴上的顶点分别为A1(-2,0),A2(2,0)。(I)求椭圆的方程;(II)若直线:(2)lxtt与x轴交于点T,点P为直线l上异于点T的任一点,直线PA1,PA2分别与椭圆交于M、N点,试问直线MN是否通过椭圆的焦点?并证明你的结论。解:(I)由已知椭圆C的离心率32cea,2a,则得3,1cb。从而椭圆的方程为2214xy(II)设11(,)Mxy,22(,)Nxy,直线1AM的斜率为1k,则直线1AM的方程为1(2)ykx,由122(2)14ykxxy消y整理得222121(14)161640kxkxk12x和是方程的两个根21121164214kxk则211212814kxk,1121414kyk,即点M的坐标为2112211284(,)1414kkkk同理,设直线A2N的斜率为k2,则得点N的坐标为2222222824(,)1414kkkk12(

1 / 11
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功