导数的概念 课件

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第一章导数及其应用1.1.2导数的概念在高台跳水中,运动员相对于水面的高度h(单位:米)与起跳后的时间t(单位:秒)存在关系h(t)=-4.9t2+6.5t+101:计算运动员在这段时间里的平均速度49650t平均速度只能粗略地描述运动员在一时间段的运动状态,并不能反映某一刻的运动状态。这就需要用瞬时速度来更精细地刻画运动员的运动状态。我们把物体在某一时刻的速度称为瞬时速度.如何求瞬时速度?在高台跳水运动中,运动员相对于水面的高度为h(单位:m)与起跳后的时间t(单位:s)存在函数关系h=-4.9t2+6.5t+10hto求t=2时的瞬时速度?2我们先考察t=2附近的情况。任取一个时刻2+△t,△t是时间改变量,可以是正值,也可以是负值,但不为0.当△t<0时,在2之前;当△t>0时,在2之后。△t<0时2+△t△t>0时2+△t2,22,2,.ttv计算区间和区间内平均速度可以得到如下表格△t0时,在[2+△t,2]这段时间内△t0时,在[2,2+△t]这段时间内1.139.4tv1.139.4tv13.051v当△t=–0.01时,13.149v当△t=0.01时,0951.13v当△t=–0.001时,1049.13v当△t=0.001时,13.09951v当△t=–0.0001时,13.10049v当△t=0.0001时,099951.13v△t=–0.00001,100049.13v△t=0.00001,13.0999951v△t=–0.000001,13.1000049v△t=0.000001,…………平均变化率近似地刻画了曲线在某一区间上的变化趋势.如何精确地刻画曲线在一点处的变化趋势呢?105.69.4)(2ttth当Δt趋近于0时,平均速度有什么变化趋势?,0,2,22,13.1.tt我们发现当趋近于时即无论从小于的一边还是从大于一边趋近于时平均速度都趋近于一个确定的值,||,2.,213.1/.tvttms从物理的角度看时间间隔无限变小时平均速度就无限趋近于时的瞬时速度因此运动员在时的瞬时速度是..,,.lim,11302113220定值趋近于确平均速度时趋势近于当表示我们用为了表述方便vttththt..时的极限趋近于当是我们称确定值022113tthth瞬时速度tt-ht+th000limt在局部以平均速度代替瞬时速度,然后通过取极限,从瞬时速度的近似值过渡到瞬时速度的精确值。思考:⑴如何求瞬时速度?⑵lim是什么意思?在其下面的条件下求右面的极限值。⑶运动员在某一时刻t0的瞬时速度如何表示?0limt(2)(2)13.1hthtxx-fx+xf00示?处的瞬时变化率怎么表在x=xx2、函数f0xxfxxflimxylimxf0x0x000-+==即:1、函数的平均变化率怎么表示?思考:xx-fx+xf000xlim000xxyxfxxxfy=或记作:处的导数,=在=我们称它为函数定义:函数y=f(x)在x=x0处的瞬时变化率是xxxfxxfxxylim)()Δ(lim0000称为函数y=f(x)在x=x0处的导数,记作0000(Δ)()()lim.xfxxfxfxx)(0xf或,即0|xxy。其导数值一般也不相同的值有关,不同的与000)(.1xxxf的具体取值无关。与xxf)(.20一概念的两个名称。瞬时变化率与导数是同.3由导数的意义可知,求函数y=f(x)在点x0处的导数的基本方法是:);()()1(00xfxxfy求函数的增量;)()()2(00xxfxxfxy求平均变化率.lim)()3(00xyxfx取极限,得导数注意:这里的增量不是一般意义上的增量,它可正也可负.自变量的增量Δx的形式是多样的,但不论Δx选择哪种形式,Δy也必须选择与之相对应的形式.一差、二比、三极限例1:求函数y=x2在x=1处的导数;,)(21)1()1(222xxxy解:,2)(22xxxxxy.2|,2)2(limlim100xxxyxxy变式.(1)求函数y=3x2在x=1处的导数.(2)求函数f(x)=-x2+x在x=-1附近的平均变化率,并求出在该点处的导数.(3)质点M按规律s(t)=at2+1作直线运动(位移单位:m,时间单位:s).若质点M在t=2时的瞬时速度为8m/s,求常数a的值.求函数在某处的导数632例2、将原油提炼为汽油,柴油,塑胶等各种不同的产品,需要对原油进行冷却和加热,如果第xh时,原油的温度(单位:OC)为y=f(x)=x2-7x+15(0≤x≤8)。计算第2h和第6h时,原油温度的瞬时变化率,并说明他们的意义。在第2h和第6h时,原油温度的瞬时变化率分别为–3和5.它说明在第2h附近,原油温度大约以3℃/h的速率下降;在第6h附近,原油温度大约以5℃/h的速率上升.例3:(1)求函数f(x)=1x在x=1处的导数解:(1)∵Δy=1x+Δx-1x=-Δxxx+Δx(2)已知函数f(x)=ax2+c,且f′(1)=2,求a.(2)∵Δy=a(x+Δx)2+c-(ax2+c)∴ΔyΔx=-1xx+Δx∴limΔx→0ΔyΔx=limΔx→0[-1xx+Δx]=-1x2∴f′(1)=-112=-1=2axΔx+a(Δx)2∴f′(x)=limΔx→0(2ax+aΔx)=2ax∴ΔyΔx=2ax+aΔx∴f′(1)=2a=2,∴a=1[例4]航天飞机发射后的一段时间内,第ts时的高度h(t)=5t3+30t2+45t+4,其中h的单位为m,t的单位为s.(1)h(0),h(1)分别表示什么;(2)求第1s内高度的平均变化率;(3)求第1s末高度的瞬时变化率,并说明它的意义.小结:1.解读导数概念(1)导数是一个局部概念,它只与函数y=f(x)在x=x0处及其附近的函数值有关,与Δx无关.(2)f′(x0)是一个常数,即当Δx→0时,存在一个常数与fx0+Δx-fx0Δx无限接近.如果当Δx→0时,limΔx→0ΔyΔx不存在,则称函数f(x)在x=x0处不可导.2.用定义求导数的步骤:由导数的定义知,求一个函数y=f(x)在x=x0处的导数的步骤如下:(1)求函数值的改变量Δy=f(x0+Δx)-f(x0);(2)求平均变化率ΔyΔx=fx0+Δx-fx0Δx;(3)取极限,得导数f′(x0)=limΔx→0ΔyΔx.

1 / 16
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功