一、和、差、积、商的求导法则定理并且可导处也在点分母不为零们的和、差、积、商则它处可导在点如果函数,)(,)(),(xxxvxu).0)(()()()()()(])()([)3();()()()(])()([)2();()(])()([)1(2xvxvxvxuxvxuxvxuxvxuxvxuxvxuxvxuxvxuvuvu)(vuvuuv)(2)(vvuvuvu证(2)),()()(xvxuxf设xxfxxfxfx)()(lim)(0xxvxuxxvxxux)()()()(lim0xxvxxvxuxxvxuxxux)]()()[()()]()([lim0)()()()(xvxuxvxu);()()()(])()([xvxuxvxuxvxun21n21n21uuuuuu)uu(u2推论uC)Cu(1推论n21uuu3推论2)1(VVV例1.sin223的导数求xxxy解23xyx4.4cos例2.4sin36的导数求xxy解56xy3.cosx.0例4.tan的导数求xy解)cossin()(tanxxxyxxxxx2cos)(cossincos)(sinxxx222cossincosxx22seccos1.sec)(tan2xx即.csc)(cot2xx同理可得例5.sec的导数求xy解)cos1()(secxxyxx2cos)(cos0.tansecxxxx2cossin.cotcsc)(cscxxx同理可得)(secx.tansecxx基本初等函数的导数有:.0)(C)(.)(1Rxx.cos)(sinxx.)(cossimxx.ln1)(logaxxa.1)(lnxx.sec)(tan2xx.csc)(cot2xx)(secx.tansecxx.cotcsc)(cscxxx122|11xyyxxy及求设12yxxxy求设cosln二、反函数的导数定理)(1])([])([)()()(111xfyf,yf,yfxxfxxfy且有存在则在相应点连续且反函数,处有不等于零的导数在点如果函数即反函数的导数等于直接函数导数的倒数.例7.arcsin的导数求函数xy)(sin1)(arcsinyxycos1y2sin11.112x)(arcsinx211x.112x.11)(arccos2xx同理可得;11)(arctan2xx)(arcsinx.11)cot(2xxarcyaaayx求且已知)10(例:的反函数是解yxay:axlog)(xa)(log1yaaylnaaxln:即)(xaaaxln特别地:xxee)(三、复合函数的求导法则定理000,)]([,)()(,)(0000xxuuxxdxdududydxdyxxfyxuufyxxu且其导数为可导在点则复合函数可导在点而可导在点如果函数即函数对自变量求导,等于函数对中间变量求导,乘以中间变量对自变量求导.(链式法则)证,)(0可导在点由uufy)(lim00ufuyu)0lim()(00uufuy故uuufy)(0则xyx0lim])([lim00xuxuufxxuxuufxxx0000limlimlim)().()(00xuf推广),(),(),(xvvuufy设.)]}([{dxdvdvdududydxdyxfy的导数为则复合函数dxdududydxdy例10.sinln的导数求函数xy解.sin,lnxuuydxdududydxdyxucos1xxsincosxcot9例.3的导数求函数xey解,,3xueyudxdududydxdy.33223xexexu例11.)1(102的导数求函数xy解xu2109xx2)1(1092.)1(2092xxdxdududydxdy1,210xuuy例12.arcsin22222的导数求函数axaxaxy解)arcsin2()2(222axaxaxy22122xxa.22xa)0(a2222222222121xaaxaxxa222xax2022a2)(1axa1xx21)(211)(arcsinxx例13.)2(21ln32的导数求函数xxxy解),2ln(31)1ln(212xxy11212xy)2(3112xxx例14.1sin的导数求函数xey解xey1sinxe1sin.1cos11sin2xexxx2)2(31x)1(sinxx1cos)1(x只需在方程F(x,y)=0的两边同时对x求导。而在求导过程中,把y看成x的函数。(导数结果中可含有y)四、隐函数求导法:隐函数:若x与y的函数关系由方程F(x,y)=0确定,则称这种函数关系为隐函数。.)(形式称为显函数xfy0),(yxF)(xfy隐函数的显化问题:隐函数不易显化或不能显化如何求导?例1.,00xyxdxdydxdyyeexy的导数所确定的隐函数求由方程解,求导方程两边对x0dxdyeedxdyxyyx解得,yxexyedxdy,0,0yx由原方程知000yxyxxexyedxdy.1五、对数求导法观察函数.,)4(1)1(sin23xxxyexxxy方法:先在方程两边取对数,然后利用隐函数的求导方法求出导数.--------对数求导法适用范围:.)()(的情形数多个函数相乘和幂指函xvxu例1解]142)1(3111[)4(1)1(23xxxexxxyx等式两边取对数得xxxxy)4ln(2)1ln(31)1ln(ln求导得上式两边对x142)1(3111xxxyy.,)4(1)1(23yexxxyx求设例2解.),0(sinyxxyx求设等式两边取对数得xxylnsinln求导得上式两边对xxxxxyy1sinlncos1)1sinln(cosxxxxyy)sinln(cossinxxxxxx六、由参数方程所确定的函数的导数.,)()(定的函数称此为由参数方程所确间的函数关系与确定若参数方程xytytx例如,,22tytx2xt22)2(xty42xxy21消去参数问题:消参困难或无法消参如何求导?t),()(1xttx具有单调连续的反函数设函数)]([1xy,0)(,)(),(ttytx且都可导再设函数由复合函数及反函数的求导法则得dxdtdtdydxdydtdxdtdy1)()(ttdtdxdtdydxdy即,)()(中在方程tytx例解dtdxdtdydxdyttcos1sintaatacossin2cos12sin2tdxdy.1.方程处的切线在求摆线2)cos1()sin(ttayttax.),12(,2ayaxt时当所求切线方程为)12(axay)22(axy即七、初等函数的求导问题1.常数和基本初等函数的导数公式)(csc)(sec)(cot)(tan)(cos)(sin)()(xxxxxxxC)cot()(arctan)(arccos)(arcsin)(ln)(log)()(xarcxxxxxeaaxx01xxcosxsinx2secx2cscxxtansecxxcotcscxaxlnxeaxln/1x/121/1x21/1x)1/(12x)1/(12x2.函数的和、差、积、商的求导法则3.复合函数的求导法则),(),(xuufy而设可导,则、设)()(xvxu)(10vuvu)(20CuuC03)(uvvuvu04)(vu2vvuvu的导数为则复合函数)]([xfy).()()(xufxydxdududydxdy或5、隐函数求导法:只需在方程F(x,y)=0的两边同时对x求导。而在求导过程中,把y看成x的函数。(导数结果中可含有y)4、反函数的求导法则:反函数的导数等于直接函数导数的倒数.6、对数求导法:先对函数取对数再求导的方法。7、参数方程求导法:。例15.的导数求函数xxxy解xxxy21xxx21xxxxx211(21.812422xxxxxxxxxx)(xxx1(xx21))(xx))211(xyxyx求例,16sin1sinsinxxxy解:xxyxlnsin)(xfa)]([xf指数函数幂函数幂指函数)(sinxxy)(sinlnxxe)(lnsinxxe)(lnsinxxe)ln(sinxxxxsinx(cosxlnxsin)1xyxnxyn求例,sinsin17解:)(sinsinsin)(sinxnxxnxynnnxcosnxnsinnxsinxnn1sinxcos思考:例18.)](sin[的导数求函数nnnxfy解)](sin[1nnnxnfy)(sin1nnxnnxcos).(sin)](sin[)(sin)](sin[cos1113nnnnnnnnnnxxfxxfxxn)](sin[nnxf)(sinnx1nnx