2016高考数学常见题型(第三辑):数列的通项公式

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

数列的通项公式题型一累加法例1在数列{an}中,a1=2,an+1=an+ln(1+1n),求an.【解析】方法一:∵an+1=an+ln(1+1n),∴an+1-an=lnn+1n,∴an-an-1=lnnn-1,an-1-an-2=lnn-1n-2,…,a2-a1=ln21.∴an-a1=lnnn-1+lnn-1n-2+…+ln21=lnn.又a1=2,∴an=lnn+2.方法二:∵an+1=an+ln(1+1n),∴an+1-an=lnn+1n.又a1=2,∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=lnnn-1+lnn-1n-2+…+ln21+2=lnn+2.即an=lnn+2.点评:利用恒等式an=a1+(a2-a1)+…+(an-an-1)求通项公式的方法称为累加法.累加法是求型如an+1=an+f(n)的递推数列通项公式的基本方法,其中f(n)可求前n项和.(1)设数列{an}中,a1=2,an+1=an+n+1,则通项公式an=________.对点训练【解析】∵an+1=an+n+1,∴a2=a1+2,a3=a2+3,…,an=an-1+n,以上n-1个式子相加,得an=a1+2+3+…+n=nn+12+1.【答案】n2+n+22(2)设数列{an}满足a1=2,an+1-an=3·22n-1,求数列{an}的通项公式.【解析】累加法:由已知得,当n≥1时,an+1=[(an+1-an)+(an-an-1)+…+(a2-a1)]+a1=3(22n-1+22n-3+…+2)+2=22(n+1)-1.而a1=2,所以数列{an}的通项公式为an=22n-1.【答案】an=22n-1题型二累乘法例2设数列{an}是首项为1的正项数列,且(n+1)a2n+1-na2n+an+1an=0(n=1,2,3,…),则它的通项公式是an=________.【解析】原式可化为[(n+1)an+1-nan](an+1+an)=0.∵an+1+an0,∴an+1an=nn+1.则a2a1=12,a3a2=23,a4a3=34,…,anan-1=n-1n,逐项相乘,得ana1=1n,即an=1n.【答案】1n点评:利用恒等式an=a1·a2a1·a3a2…anan-1(an≠0)求通项公式的方法称为累乘法.累乘法是求型如an+1=g(n)an的递推数列通项公式的基本方法,其中g(n)可求前n项积.对点训练已知数列{an}满足a1=23,an+1=nn+2an,求通项公式an.【解析】由已知得an+1an=nn+2,分别令n=1,2,3,…,(n-1),代入上式得n-1个等式累乘,即a2a1·a3a2·a4a3·…·anan-1=13×24×35×46×…×n-2n×n-1n+1,所以ana1=2nn+1.又因为a1=23也满足该式,所以an=43nn+1.题型三换元法例3已知数列{an},其中a1=43,a2=139,且当n≥3时,an-an-1=13(an-1-an-2),求通项公式an.【解析】设bn-1=an-an-1,原递推式可化为bn-1=13bn-2,{bn}是一个等比数列.b1=a2-a1=139-43=19,公比为13,故bn-1=b1·(13)n-2=19(13)n-2=(13)n.故an-an-1=(13)n.由逐差法,可得an=32-12(13)n.点评:通过换元构造等差或等比数列从而求得通项.(1)若数列{an}中,a1=3且an+1=a(n是正整数),则它的通项公式an=________.对点训练【解析】由题意知an0,将an+1=a2n两边取对数,得lgan+1=2lgan,即lgan+1lgan=2,所以数列{lgan}是以lga1=lg3为首项,公比为2的等比数列.lgan=lga1·2n-1=2n-1·lg3,即an=32n-1.【答案】32n-1(2)已知数列{an}中,其中a1=1,且当n≥2时,an=an-12an-1+1,求通项公式an.【解析】将an=an-12an-1+1两边取倒数,得1an-1an-1=2,这说明{1an}是一个等差数列,首项是1a1=1,公差为2,所以1an=1+(n-1)×2=2n-1,即an=12n-1.题型四待定系数法(构造新数列法)例4(1)已知数列{an}中,a1=1,an+1=2an+3,求通项公式an.【解析】设递推公式an+1=2an+3可以转化为an+1-t=2(an-t)即an+1=2an-t⇒t=-3.故递推公式为an+1+3=2(an+3),令bn=an+3,则b1=a1+3=4,且bn+1bn=an+1+3an+3=2.所以{bn}是以b1=4为首项,2为公比的等比数列,则bn=4×2n-1=2n+1,所以an=2n+1-3.(2)在数列{an}中,a1=-1,an+1=2an+4·3n-1,求通项公式an.【解析】原递推式可化为an+1+λ·3n=2(an+λ·3n-1).①比较系数得λ=-4,①式即是:an+1-4·3n=2(an-4·3n-1).则数列{an-4·3n-1}是一个等比数列,其首项a1-4·31-1=-5,公比是2.∴an-4·3n-1=-5·2n-1.即an=4·3n-1-5·2n-1.(3)在数列{an}中,a1=-1,a2=2,当n∈N*,an+2=5an+1-6an,求通项公式an.【解析】an+2=5an+1-6an可化为an+2+λan+1=(5+λ)(an+1+λan).比较系数得λ=-3或λ=-2,不妨取λ=-2.代入可得an+2-2an+1=3(an+1-2an).则{an+1-2an}是一个等比数列,首项a2-2a1=2-2(-1)=4,公比为3.∴an+1-2an=4·3n-1.利用上题结果有:an=4·3n-1-5·2n-1.当λ=-3时结果相同.点评:构造法基本原理是在递推关系的两边加上相同的数或相同性质的量,构造数列的每一项都加上相同的数或相同性质的量,使之成为等差或等比数列.对点训练已知数列{an}满足a1=12,31+an+11-an=21+an1-an+1,anan+10,求数列{an}的通项公式.【解析】∵31+an+11-an=21+an1-an+1,∴3a2n+1=2a2n+1.即a2n+1=23a2n+13.∴a2n+1-1=23(a2n-1).令bn=a2n-1-1,∴bn+1=23bn.又b1=a21-1=-34,∴数列{bn}是首项为-34,公比为23的等比数列.∴bn=-34·(23)n-1.∴a2n-1=-34·(23)n-1.∴a2n=1-34·(23)n-1.又a1=120,an·an+10,∴an=(-1)n-11-34·23n-1.例5设数列{an}的前n项和为Sn,已知a1=4,an+1=Sn+3n,n∈N*.求数列{an}的通项公式.题型五公式法【解析】方法一:由an+1=Sn+3n,得an=Sn-1+3n-1(n≥2).两式相减,得an+1-an=an+2×3n-1.∴an+1=2an+2×3n-1(n≥2).两边同除以2n+1,得an+12n+1=an2n+3n-12n(n≥2).当n≥2时,an2n=a222+(a323-a222)+(a424-a323)+…+(an2n-an-12n-1)=a24+322+3223+…+3n-22n-1=74+341-32n-21-32=14+(32)n-1,∴an=2n-2+2×3n-1n≥2,4n=1.方法二:依题意,得Sn+1-Sn=an+1=Sn+3n,即Sn+1=2Sn+3n.由此得Sn+1-3n+1=2(Sn-3n),∴数列{Sn-3n}是首项为S1-31=1,公比为2的等比数列.因此Sn-3n=2n-1,n∈N*.∴Sn=3n+2n-1.因此an=Sn-Sn-1S1=2n-2+2×3n-1n≥2,4n=1.点评:已知Sn与an的关系求通项:(1)已知数列{an}的前n项和Sn,求an时,要注意运用an和Sn的关系,即an=S1,n=1,Sn-Sn-1,n≥2.(2)对于形如Sn=f(an)求an常有两种处理方法:①由Sn=f(an),得Sn-1=f(an-1)两式作差,得an=f(an)-f(an-1)(n≥2).②将an换成Sn-Sn-1,即Sn=f(Sn-Sn-1),先求出Sn,再求出an.(1)已知{an}的前n项和为Sn,且a1=1,an+1=Sn,则通项公式an=________.对点训练【解析】方法一:∵Sn+1-Sn=Sn,∴Sn+1=2Sn.因此{Sn}是以S1=a1=1为首项,2为公比的等比数列.∴Sn=2n-1,∴an=2n-2n≥2,1n=1.方法二:由an+1=Sn,得an=Sn-1(n≥2).两式相减,得an+1=2an(n≥2).因此数列{an}从第二项起是以2为公比的等比数列.∴an=1n=1,2n-2n≥2.【答案】1n=1,2n-2n≥2(2)若an0,an+22=2Sn,则通项公式an=________.【解析】公式法由an+22=2Sn,得Sn=an+228.n≥2时,an=Sn-Sn-1=an+228-an-1+228.∴8an=(an+an-1+4)(an-an-1).∴(an+an-1)(an-an-1-4)=0.∵an0,∴an+an-10.∴an-an-1-4=0,即an-an-1=4.∴数列{an}为等差数列,且公差d=4.又a1=S1=a1+228,∴a1=2.∴an=2+4(n-1)=4n-2.【答案】4n-2

1 / 33
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功