-1-/9求几何图形的阴影部分的面积1.如图,大圆半径为5厘米,小圆半径为3厘米,求阴影部分的面积,2.如图,已知两同心圆(圆心相同,半径不相等的两个圆),大圆半径为3厘米,小圆半径为1厘米,求阴影部分的面积3.如图,大圆半径为6cm,小圆半径为4cm,求阴影部分的面积4.已知如图大圆的半径为4cm,小圆的半径为3cm,求两个圆阴影部分的面积的差5.求阴影部分的面积(单位:厘米)6.正方形面积是7平方厘米,求阴影部分的面积(单位:厘米)7.求图中阴影部分的面积(单位:厘米)8.求阴影部分的面积(单位:厘米)9.求阴影部分的面积(单位:厘米)-2-/910.如图,已知小圆半径为2厘米,大圆半径是小圆的3倍,问空白部分甲比乙的面积多多少厘米?11.求阴影部分的面积(单位:厘米)12.求阴影部分的面积(单位:厘米)13.求阴影部分的面积(单位:厘米)14.求阴影部分的面积(单位:厘米)15.求阴影部分的面积(单位:厘米)16.求阴影部分的面积(单位:厘米)17.求阴影部分的面积(单位:厘米)18.求阴影部分的面积(单位:厘米)19.已知直角三角形面积是12平方厘米,求阴影部分的面积-3-/920.求阴影部分的面积(单位:厘米)21.图中圆的半径为5厘米,求阴影部分的面积(单位:厘米)22.如图,在边长为6厘米的等边三角形中挖去三个同样的扇形,求阴影部分的周长23.正方形边长为2厘米,求阴影部分的面积24.如图,正方形ABCD的面积是36平方厘米,求阴影部分的面积25.图中四个圆的半径都是1厘米,求阴影部分的面积26.如图,正方形边长为8厘米,求阴影部分的面积27.图中的4个圆的圆心是正方形的4个顶点,,它们的公共点是该正方形的中心,如果每个圆的半径都是1厘米,那么阴影部分的面积是多少?28.如图,有8个半径为1厘米的小圆,用他们的圆周的一部分连成一个花瓣图形,图中的黑点是这些圆的圆心。如果圆周π率取3.1416,那么花瓣图形的的面积是多少平方厘米?-4-/929.如图,四个扇形的半径相等,求阴影部分的面积(单位:厘米)30.如图,等腰直角三角形ABC和四分之一圆DEB,AB=5厘米,BE=2厘米,求图中阴影部分的面积31.如图,正方形ABCD的对角线AC=2厘米,扇形ACB是以AC为直径的半圆,扇形DAC是以D为圆心,AD为半径的圆的一部分,求阴影部分的面积32.求阴影部分的面积(单位:厘米)33.图中直角三角形ABC的直角三角形的直角边AB=4厘米,BC=6厘米,扇形BCD所在圆是以B为圆心,半径为BC的圆,∠CBD=500,问阴影部分甲比乙面积小多少?34.如图,三角形ABC是直角三角形,阴影部分甲比阴影部分乙面积大28平方厘米,AB=40厘米,求BC的长度35.如图是一个正方形和半圆所组成的图形,P为半圆周的中点,Q为正方形一边上的中点,求阴影部分的面积36.如图,大正方形的边长为6厘米,小正方形的边长为4厘米。求阴影部分的面积-5-/937.求阴影部分的面积(单位:厘米)38.求阴影部分的面积(单位:厘米)39.如图,三角形OAB是等腰三角形,OBC是扇形,OB=5厘米,求阴影部分的面积40.如图,大小正方形的边长分别是3厘米和2厘米,求阴影部分的面积41.如图,大小正方形的边长分别是12厘米和10厘米,求阴影部分面积42.如图,求图中阴影部分图形的面积及周长43.如图,阴影部分三角形的面积是5平方米,求圆的面积-6-/944.如图,圆的直径是2厘米,求阴影部分的面积45.如图,求阴影部分图形的面积及周长。46.如图,求图中阴影部分的面积(单位:厘米)47.如图,求图中阴影部分的面积48.如图,求图中阴影部分的面积49.如图,求图中阴影部分的面积。50.如图,求图中阴影部分的面积。-7-/9求几何图形阴影部分的面积答案1.5×5-3×3=25-9=16(平方厘米)2.分析:如图,根据圆的对称性,大圆与小圆之间的部分全等,故阴影部分的面积是两圆面积差的一半.解:观察图形,发现:阴影部分的面积是两圆面积差的一半,即S阴影=(S大圆﹣S小圆)=π(32﹣12)=4π,=4×3.14=12.56(平方厘米);答:阴影部分的面积是12.56平方厘米3.阴影部分的面积=21×3.14×(62-42)=1.57×(36-16)=1.57×20=31.4(平方厘米)4.分析:观察图形可知,空白处是两个圆的公共部分,所以两个圆的阴影部分的面积的差,就是这两个圆的面积之差,据此利用圆的面积公式计算即可解答问题解:3.14×42﹣3.14×32=3.14×16﹣3.14×9=3.14×(16﹣9)=3.14×7=21.98(平方厘米)5.解:这是最基本的方法:1/4圆面积减去等腰直角三角形的面积,(π/4)×22-2×1=1.14(平方厘米)6.解:这也是一种最基本的方法用正方形的面积减去41圆的面积。设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-πr2/4=7-7π/4=1.505平方厘米7.解:最基本的方法之一.用四个1/4圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米8.解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米9.解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π×22×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。10.解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π×62-π×22=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)11.解:正方形面积可用(对角线长×对角线长÷2,求),正方形面积为:5×5÷2=12.5所以阴影面积为:π×52÷4-12.5=7.125平方厘米12.解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为1/4圆,所以阴影部分面积为:41π×22=3.14平方厘米13.解:把右面的正方形平移至左边的正方形部分,则阴影部分合成一个长方形,所以阴影部分面积为:2×3=6平方厘米14.解:同上,平移左右两部分至中间部分,则合成一个长方形,所以阴影部分面积为2×1=2平方厘米15.解:这种图形称为环形,可以用两个同心圆的面积差或差的一部分来求,(π×42-π×32)×36060=67×3.14=3.66平方厘米16.解:三个部分拼成一个半圆面积.π×32÷2=14.13平方厘米17.解:连对角线后将叶形剪开移到右上面的空白部分,凑成正方形的一半.,所以阴影部分面积为:8×8÷2=32平方厘米18.解:梯形面积减去41圆面积,21(4+10)×4-41π=28-4π=15.44平方厘米.19.分析:此题比上面的题有一定难度,这是叶形的一个半.解:设三角形的直角边长为r,则21=12,2)2(r=6圆面积为:π2)2(r÷2=3π。圆内三角形的面积为12÷2=6,阴影部分面积为:(3π-6)×23=5.13平方厘米20.解:21[π×102+π×42-π×62]=21π(116-36)=40π=125.6平方厘米-8-/921.解:上面的阴影部分以AB为轴翻转后,整个阴影部分成为梯形减去直角三角形,或两个小直角三角形AED、BCD面积和,所以阴影部分面积为:5×5÷2+5×10÷2=37.5平方厘米22.解:阴影部分的周长为三个扇形弧,拼在一起为一个半圆弧,所以圆弧周长为:2×3.14×3÷2=9.42厘米23.解:右半部分上面部分逆时针,下面部分顺时针旋转到左半部分,组成一个矩形,所以面积为:1×2=2平方厘米24.解:设小圆半径为r,4=36,r=3,大圆半径为R,R2=2=18,将阴影部分通过转动移在一起构成半个圆环,所以面积为:π(R2-)÷2=4.5π=14.13平方厘米25.解:把中间部分分成四等分,分别放在上面圆的四个角上,补成一个正方形,边长为2厘米,所以面积为:2×2=4平方厘米26.解法一:将左边上面一块移至右边上面,补上空白,则左边为一三角形,右边一个半圆.阴影部分为一个三角形和一个半圆面积之和.π×42÷2+4×4=8π+16=41.12平方厘米解法二:补上两个空白为一个完整的圆.所以阴影部分面积为一个圆减去一个叶形,叶形面积为:π×42÷2-4×4=8π-16,所以阴影部分的面积为:π×42-8π+16=41.12平方厘米27.解:面积为4个圆减去8个叶形,叶形面积为:21π×12-1×1=21π-1,所以阴影部分的面积为:4π×12-8(21π-1)=8平方厘米28.分析:连接角上四个小圆的圆心构成一个正方形,各个小圆被切去43个圆,这四个部分正好合成3个整圆,而正方形中的空白部分合成两个小圆。解:阴影部分为大正方形面积与一个小圆面积之和为4×4+π=19.1416平方厘米29.分析:四个空白部分可以拼成一个以2为半径的圆.所以阴影部分的面积为梯形面积减去圆的面积,4×(4+7)÷2-π×22=22-4π=9.44平方厘米30.解:将三角形CEB以B为圆心,逆时针转动90度,到三角形ABD位置,阴影部分成为三角形ACB面积减去个小圆面积为:5×5÷2-π÷4=12.25-3.14=9.36平方厘米31.解:因为2(AD)2=(AC)2=4,所以(AD)2=2,以AC为直径的圆面积减去三角形ABC面积加上弓形AC面积,21π×12-2×2÷4+[π(AD)2÷4-2]=21π-1+(21π-1)=π-2=1.14平方厘米32.解法一:设AC中点为B,阴影面积为三角形ABD面积加弓形BD的面积,三角形ABD的面积为:5×5÷2=12.5,弓形面积为:[π÷2-5×5]÷2=7.125,所以阴影面积为:12.5+7.125=19.625平方厘米解法二:右上面空白部分为小正方形面积减去41小圆面积,其值为:5×5-41π×52=25-425π阴影面积为三角形ADC减去空白部分面积,为:10×5÷2-(25-425π)=425π=19.625平方厘米33.解:甲、乙两个部分同补上空白部分的三角形后合成一个扇形BCD,一个成为三角形ABC,此两部分差即为:π××36050-21×4×6=5π-12=3.7平方厘米34.解:两部分同补上空白部分后为直角三角形ABC,一个为半圆,设BC长为X,则40X÷2-π÷2=28,所以40X-400π=56则X=32.8厘米35.解:连PD、PC转换为两个三角形和两个弓形,两三角形面积为:△APD面积+△QPC面积=21(5×10+5×5)=37.5两弓形PC、PD面积为:21π×52-5×5,所以阴影部分的面积为:37.5+225π-25=51.75平方厘米-9-/936.解:三角形DCE的面积为:21×4×10=20平方厘米,梯形ABCD的面积为:21(4+6)×4=20平方厘米从而知道它们面积相等,则三角形ADF面积等于三角形EBF面积,阴影部分可补成圆ABE的面积,其面积为:π÷4=9π=28.26平方厘米37.解:用41大圆的面积减去长方形面积再加上一个以2为半径的41圆ABE面积,为41(π×32+π×22)-6=41×13π-6=4.205平方厘米38.解:两个弓形面积为:π2)25(-3×4÷2=425π-6,阴影部分为两个半圆面积减去两个弓形面积,结果为π×+π×2)23(-(425π-6)=π(4+49-425)+6=6平方厘米39.解:将两个同样的图形拼在一起成为41圆减等腰直角三角形[π×52÷4-21×5×5]÷2=(425π-225)÷2=3.5625平方厘米40.(2+3)×2÷2+3×3÷2-(2+3)×2÷2=4.5(平方厘米)41.(10+12)×10÷2+3.14×12×12÷4-(10+12)×10÷2=113.04(平方厘米)42.面积:6×(6÷2)-3.14×(6÷2)×(6÷2)÷2=3.87(平方厘米)周长:3.14×6÷2+6+(6