最优控制第三章课后习题答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1.2**'2**'*'*01min()2yJyyyyyydx,若(0)y与(2)y任意,求*y及(*)Jy。解:这是端点自由问题,相应的欧拉—拉格朗日方程为:()0fdfydty即''1(1)0dyyydt得''1y则'1yxc,21212yxcxc由横截条件:0fy得'1yy=0即21121(1)102xcxcc0x,1210cc;2x,12350cc。联立得122,1cc所以*21212yxx,*'2yx代入得2**'2**'*'*023201()21(221)243Jyyyyyydxxxxdx2.电枢控制的直流电动机忽略阻尼时的运动方程:()ut式中,为转轴的角位移,()ut为输入。目标函数为2201min()2uJdt,使初态(0)1及(0)1转移到终态(2)0及(2)0,求最优控制*()ut及最优角位移*()t,最优角速度*()t。解:设12,xx则122,xxxu。哈密顿函数:212212Huxu协态方程:121120,0HHxx控制方程:20Huu即*2()()utt将*()ut代入状态方程,可得1222121(),(),0,()xxtxtt边界条件为1212(0)1,(0)1,(2)0,(2)0xxxx可见这是两点边值问题,对正则方程进行拉氏变换,可得11222211221()(0)()()(0)()()(0)0()(0)()sXsxXssXsxssssss联立以上四式,可解出43211221()(0)(0)(0)(0)sXssxsxs代入初始条件12(0)1,(0)1xx,可得1212341111()(0)(0)Xsssss故2312111()1(0)(0)26xtttt同样可解得22212322221111()(0)(0)(0)1()(0)(0)(0)2Xsxsssxtxtt利用终端条件12(2)0,(2)0xx可得2121432(0)(0)0312(0)2(0)0解得127(0)3,(0)21111(0)(),()(0)sts;221221211()(0)(0),()(0)(0)sttss即127()3,()32ttt所以:最优控制*27()()32uttt最优角位移*23171()142xtttt最优角速度*2273()122xttt3.222201min(2)()22.,(),(0)1.()usJxutdtstxutxs为常量试求出最优控制*u()t及相应的轨线*()xt。解:哈密顿函数21()()2Hutut协态方程:0HX状态方程:HXu控制方程:0HuU即*u()()tt横截条件:2()(2)()fftsxXt对正则方程进行拉氏变换得:()(0)()()(0)0sXsxsss(0)()()(0)()xsXssss联立得2(0)(0)()(0)()xXsssss拉氏反变换得:()(0)(0),()(0)xtxtt代入初始条件得2()1(2),xtsxt当2t时,21(2)12xs,22(2)12ss所以最优控制22*()12suts相应的轨线22*()112sxtts4.系统由三个串联积分环节组成12233xxxxxu初态123(0)0(0)0(0)0xxx该系统由初态转到终端约束函数2212(1)(1)1,xx目标函数1201min(),2uJutdt求最优解。解:本题目属于积分型性能指标、终端时间ft固定,终端状态()fxt受约束的泛函极值问题。由题意知:222121[(),]0,(.),[()](1)(1)12fffxttLuNxtxx构造哈密顿函数为21223312Huxxu协态方程:1111212122232312330,(),(),()HtcxHtctcxHtctctcx控制方程:30Huu,23123()()uttctctc状态方程:3xu=2123ctctc,323123411()32xtctctctc322312341132xxctctctc,4322123451111262xctctctctc43212123451111262xxctctctctc,543211234561111602462xctctctctctc根据已知初始状态123(0)0,(0)0,(0)0xxx得4560ccc再根据目标集条件2212(1)(1)1xx得22221231132310442532004201280260014400ccccccccc根据横截条件1111123122121232111(1)|2(1)()()3012311(1)|2(1)())()63TtTtNvxvcccvxtNvxvcccvxt5.系统为,(0)10xxux转移到(1)0,x目标函数为1201min()2uJutdt,求最优控制*()ut和最优轨迹*()xt。解:设哈密顿函数21()2Huxu协态方程:HX,控制方程:0,()()HuuttU状态方程:()xxux,对上面的方程进行拉氏变换得()(0)[()()]sXsxXss,(0)()()1xsXss(0)()(0)(),()1sssss联立得2(0)(0)()1(1)xXsss进行拉氏反变换得()(0)(0)ttxtxete,边界条件:(0)10x,(1)0,x得(0)10()(0)10tttee最优控制*()10tute,最优轨迹*()1010ttxtete6.系统为3,(0)1xxux目标为12201min()2uJxudt,试列出两点边值问题。解:哈密顿函数:2231()()2Hxuxu协态方程:23HxxX状态方程:3Hxxu控制方程:0HuU边界条件:(0)1x7.系统为,(0)1xxux,目标为1220min()uJxudt,求最优解*()ut及*()xt。解:设哈密顿函数22()Hxuxu协态方程:2HxX状态方程:Hxxu控制方程:120,2HuuU对上面方程进行拉氏变换,()(0)()()sXsxXsus,1(0)()2()1xsXss()(0)()2()sssXs,(0)2()()1Xsss联立得2211()(0)(0)22(2)sXsxss

1 / 5
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功