Measures of simultaneous approximation for quasi-p

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

MEASURESOFSIMULTANEOUSAPPROXIMATIONFORQUASI-PERIODSOFABELIANVARIETIESPIERREGRINSPAN1.IntrodutionThistexthasitssoureinseveral,botholdandreent,results:Firstandforemost,aseriesoftheoremsofChudnovskyfromthe70’s([Chu84℄,Chap.7)whih,astheyareentralhereandsomewhatsatteredinChudnovsky’sbook,wepresentlyreall:Theorem1.1(Chudnovsky’stheorems).Let=Z!+Z!0Cbealattiewithinvariantsg2,g3,Weierstrassfuntions},andquasi-periods,0,alldenedintheusualway(see[Sil94℄).Eahofthesetsbelowontainsatleasttwoalgebraiallyindependentnumbers:rst(1)fg2;g3;!;!g,(2)fg2;g3;!;;!0;0g;ifweassumeg2;g32Q:(3)f!;!g;(4)f!;!0;;0g;andif,stillassumingg2;g32Q,weonsidertwoomplexnumbersuandu0,Q-linearlyindependentandsuhthat}(u);}(u0)2Q:(5)f!;(u)!ug;(6)fu;u0;(u);(u0)g:Itanbenotiedthattheaboveassertionsarerelated,regard-lessoftheirtruthfulness,bythefollowinglogialimpliations:(1))(3)((5)++(2))(4)((6)Seond,aresultannounedinChudnovsky’sbook([Chu84℄,The-orem9p.9)whihextendsassertion(4)abovetoabelianvarietiesofarbitrarydimension;aompleteproofwasreentlygivenin[Vas96℄.1Third,Theorem4.1of[RW97℄,whereameasureofsimultane-ousapproximationisestablishedwhihhasTheorem1.1(4)asaorollary.Fourth,a\trikintroduedbyChudnovskyin[Chu82℄toproveasharpmeasureofalgebraiindependenereningassertion(3)above;reentlyredisoveredin[Phi99℄,[Bru99℄,itonsistsinre-latingelliptiandquasi-ellipti(likeWeierstrass’s)funtionstoG-funtions,allowingbetterarithmetiestimatesinthetransen-deneproofand,ultimately,anoptimaldependeneofmeasuresintheparameterontrollingtheheight.Oneimportantfeatureofourresults,omingfrompointThreeabove,isthefollowing:Denition1.1.A(simultaneous)approximationmeasurefor(1;:::;n)2Cnisafuntion:NR+!R+suhthatforsomeonstantC0,forany(1;:::;n)2Qnwith[Q(1;:::;n):Q℄D,h(i)h(absolutelogarithmiheightasdenedin[Wal92℄)andD;hConehaslogmaxijiijC(D;h):Beforestatingourmainresult,wereallafewmoredenitions.LetAbeanabelianvarietyofdimensiongdenedoverasubeldKofC.Arational(henemeromorphi)dierentialonAissaidtobeoftheseondkindifithasnoresidues([GH78℄,p.454);thequotientspaeofseond-kindbyexatdierentialshasdimension2gandwillbedenotedbyH1DR(A;K),orH1DR(A)whenweimpliitlytakeK=C(thenotationH1DRisjustiedby[FW84℄,p.192).Ontheotherhand,H1(A;Z)willdenotetheusualrsthomologygroupofA(C).Theorem1.2.LetAbeanabelianvarietydenedoveraeldKC,(!1;:::;!2g)representingabasisofH1DR(A;K)andu1;:::;ur2T0A(C)(tangentspaeattheorigin),Q-linearlyindependentandsuhthatexpA(uj)2A(K).Welet=rg.1.IfKQ,thesetofRuj0!i(1i2g;1jr)admitsthefollowingapproximationmeasure:1(D;h)=D32+1(logD)1=2(D2=+h):2.Ifalltheujareperiods(elementsoftheperiodlattie=kerexpA),thesetmadeupbyallRuj0!i(1i2g;1jr)togetherwithageneratingsystemofKoverQadmitsthefollow-ingapproximationmeasure:2(D;h)=[D(h+logD)℄3=:2UsingatheoremofLaurent-Roy([LR99℄,Theoreme1.2)weande-duefromassertions(1)and(2)(resp.)ofthepreedingtheoremexten-sionsinarbitrarydimensionofassertions(6)and(2)(resp.)ofTheorem1.1:Corollary1.1.1.IfKQandr=2g,theRuj0!igenerateaeldoftransendenedegreeatleast2.2.Ifrg+1andtheujareperiods,theeldgeneratedoverKbytheRuj0!ihastransendenedegree(overQ)atleast2.Thetextisarrangedasfollows.Setion2brieyreviewsembed-dingsofextensionsofabelianvarietiesbypowersoftheadditivegroup[FW84℄,andendswithazeroestimate,orollaryof[Phi96℄,tailoredtothispartiulartypeofalgebraigroups.Setion3ontainsaddition,multipliationanddierentiationformulaeforthefuntionsinvolvedintheseembeddings,muhinthespiritandontinuationof[MW93℄x3;therewealsoonstrut,startingfromlassialthetafuntions,\sigmafuntionswhiharenothingbutthe\algebraithetafuntionswhoseexisteneisprovedin[Bar70℄.Thenextsetion(x4)develops,intheontextofthealgebraigroupsdesribedabove,Chudnovsky’s\G-trikmentionedearlier(pointFour);itisbasedonaquitegeneralandeetiveversionofEisenstein’slassialtheoremstatingthateveryalgebraipowerseriesisaG-funtion(see[PS76℄,VIII.3.3&VIII.4.4).Insetionx5,wereviewbrieytheveryspeialbutlassialaseg=1ofthegeneralresultsontainedintheprevioustwosetions.Insetion6westateinfulldetailandarryouttheproofofourmainresult;andinsetion7,wedisussvariousresultsloselyrelatedtoourmaintheorem,statesomewithsummaryindiationsofproofs,andexam-inewhihtehnialdiÆulties(omingfromtheinsuÆienyofknownShwarz/interpolationlemmas)ariseinprovingmore.2.EmbeddingsandzerolemmaHerewewilldesribethetypeofembeddingswewillbeusingforextensions,bypowersoftheadditivegroupGa,ofprinipallypolarizedabelianvarieties.LetAbesuhanabelianvariety,CalattiesuhthatA(C)’C=.Fori=1:::gwritei=zi,andforanyderivation,logf=ff.Thefollowing,elementarybutfundamental,lemmaprovidesuswithanexpliitbasisforthequotientH1DR(A;C)ofthespaeofrst-ordermeromorphidierentialsoftheseondkindonA(i.e.withoutresidues)bythatofexatdierentials.Wereferthereaderto[Lan82℄3forboththedenitionofanondegeneratethetafuntion(allofthoseonsideredinthistextwillbeso)andtheredutionproessusedintheproof,astheybotharelassialandwillnotbeusedintherestofthetext.Lemma2.1.Foranynondegeneratethetafuntionforthelattie,thedierentialformsdz1;:::;dzg(oordina

1 / 38
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功