第4章凸轮机构

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第4章凸轮机构§4-1凸轮机构的组成和类型§4-2从动件推杆的常用运动规律§4-3凸轮机构的设计§4-4凸轮机构设计应注意的问题§4-1凸轮机构的组成和类型结构:三个构件、盘(柱)状曲线轮廓、从动件呈杆状。作用:将连续回转=从动件直线移动或摆动。优点:可精确实现任意运动规律,简单紧凑。缺点:高副,线接触,易磨损,传力不大。应用:内燃机、牙膏生产等自动线等。分类:1)按凸轮形状分:盘形、移动、圆柱凸轮(端面)。2)按推杆形状分:尖顶、滚子、平底从动件。特点:尖顶--构造简单、易磨损、用于仪表机构;滚子――磨损小,应用广;平底――受力好、润滑好,用于高速传动。3).按推杆运动分:直动(对心、偏置)、摆动优点:只需要设计适当的轮廓曲线,从动件便可获得任意的运动规律,且结构简单、紧凑、设计方便。缺点:线接触,容易磨损。设计:潘存云设计:潘存云312A线绕线机构312A线应用实例:设计:潘存云3皮带轮5卷带轮录音机卷带机构1放音键摩擦轮413245放音键卷带轮皮带轮摩擦轮录音机卷带机构设计:潘存云132送料机构设计:潘存云δhδhotδ1s2§4-2推杆的运动规律凸轮机构设计的基本任务:1)根据工作要求选定凸轮机构的形式;名词术语:一、推杆的常用运动规律基圆、推程运动角、基圆半径、推程、远休止角、回程运动角、回程、近休止角、行程。一个循环rminhω1A而根据工作要求选定推杆运动规律,是设计凸轮轮廓曲线的前提。2)推杆运动规律;3)合理确定结构尺寸;4)设计轮廓曲线。δsδsδ’sδ’sDBCB’δtδt设计:潘存云δhδhotδ1s2rminhω1Aδsδsδ’sδ’sDBCB’δtδt运动规律:推杆在推程或回程时,其位移S2、速度V2、和加速度a2随时间t的变化规律。形式:多项式、三角函数。S2=S2(t)V2=V2(t)a2=a2(t)位移曲线在推程起始点:δ1=0,s2=0代入得:C0=0,C1=h/δt推程运动方程:s2=hδ1/δtv2=hω1/δts2δ1δtv2δ1a2δ1h在推程终止点:δ1=δt,s2=h+∞-∞刚性冲击同理得回程运动方程:s2=h(1-δ1/δh)v2=-hω1/δha2=0a2=01.等速运动(一次多项式)运动规律2.等加等减速(二次多项式)运动规律位移曲线为一抛物线。加、减速各占一半。推程加速上升段边界条件:起始点:δ1=0,s2=0,v2=0中间点:δ1=δt/2,s2=h/2求得:C0=0,C1=0,C2=2h/δ2t加速段推程运动方程为:s2=2hδ21/δ2tv2=4hω1δ1/δ2ta2=4hω21/δ2t设计:潘存云δ1a2h/2δth/2推程减速上升段边界条件:终止点:δ1=δt,s2=h,v2=0中间点:δ1=δt/2,s2=h/2求得:C0=-h,C1=4h/δt,C2=-2h/δ2t减速段推程运动方程为:s2=h-2h(δt–δ1)2/δ2t1δ1s2v2=-4hω1(δt-δ1)/δ2ta2=-4hω21/δ2t235462hω/δt柔性冲击4hω2/δ2t3重写加速段推程运动方程为:s2=2hδ21/δ2tv2=4hω1δ1/δ2ta2=4hω21/δ2tδ1v2同理可得回程等加速段的运动方程为:s2=h-2hδ21/δ2hv2=-4hω1δ1/δ2ha2=-4hω21/δ2h回程等减速段运动方程为:s2=2h(δh-δ1)2/δ2hv2=-4hω1(δh-δ1)/δ2ha2=4hω21/δ2h3.五次多项式运动规律位移方程:s2=10h(δ1/δt)3-15h(δ1/δt)4+6h(δ1/δt)5δ1s2v2a2hδt无冲击,适用于高速凸轮。设计:潘存云hδtδ1s2δ1a24.余弦加速度(简谐)运动规律推程:s2=h[1-cos(πδ1/δt)]/2v2=πhω1sin(πδ1/δt)δ1/2δta2=π2hω21cos(πδ1/δt)/2δ2t回程:s2=h[1+cos(πδ1/δh)]/2v2=-πhω1sin(πδ1/δh)δ1/2δha2=-π2hω21cos(πδ1/δh)/2δ2h123456δ1v2Vmax=1.57hω/2δ0在起始和终止处理论上a2为有限值,产生柔性冲击。123456设计:潘存云v2s2a2δ1δ1δ1hoooδt正弦改进等速5、改进型运动规律将几种运动规律组合,以改善运动特性。+∞-∞v2s2a2δ1δ1δ1hoooδt1.凸轮廓线设计方法的基本原理§4-3凸轮轮廓的设计2.设计凸轮廓曲线1)对心直动尖顶从动件盘形凸轮2)滚子直动从动件盘形凸轮3)对心直动平底从动件盘形凸轮4)偏置直动尖顶从动件盘形凸轮5)解析法设计凸轮轮廓设计:潘存云一、凸轮廓线设计方法的基本原理反转原理:依据此原理可以用几何作图的方法设计凸轮的轮廓曲线,例如:给整个凸轮机构施以-ω1时,不影响各构件之间的相对运动,此时,凸轮将静止,而从动件尖顶复合运动的轨迹即凸轮的轮廓曲线。O-ω13’1’2’331122ω1设计:潘存云-ω1ω1对心直动尖顶从动件凸轮机构中,已知凸轮的基圆半径rmin,角速度ω1和从动件的运动规律,设计该凸轮轮廓曲线。设计步骤小结:①选比例尺μl作基圆rmin。②反向等分各运动角。原则是:陡密缓疏。③确定反转后,从动件尖顶在各等份点的位置。④将各尖顶点连接成一条光滑曲线。1.对心直动尖顶从动件盘形凸轮1’3’5’7’8’二、直动从动件盘形凸轮轮廓的绘制1357891113159’11’13’12’14’10’设计:潘存云911131513578-ω1设计步骤小结:①选比例尺μl作基圆rmin。②反向等分各运动角。原则是:陡密缓疏。③确定反转后,从动件尖顶在各等份点的位置。④将各尖顶点连接成一条光滑曲线。1’3’5’7’8’9’11’13’12’14’理论轮廓实际轮廓⑤作各位置滚子圆的内(外)包络线。2.滚子直动从动件盘形凸轮滚子直动从动件凸轮机构中,已知凸轮的基圆半径rmin,角速度ω1和从动件的运动规律,设计该凸轮轮廓曲线。ω1设计:潘存云911131513578对心直动平底从动件凸轮机构中,已知凸轮的基圆半径rmin,角速度ω1和从动件的运动规律,设计该凸轮轮廓曲线。设计步骤:①选比例尺μl作基圆rmin。②反向等分各运动角。原则是:陡密缓疏。③确定反转后,从动件平底直线在各等份点的位置。④作平底直线族的内包络线。3.对心直动平底从动件盘形凸轮8’7’6’5’4’3’2’1’9’10’11’12’13’14’-ω1ω11’3’5’7’8’9’11’13’12’14’123456781514131211109设计:潘存云911131513578OeA偏置直动尖顶从动件凸轮机构中,已知凸轮的基圆半径rmin,角速度ω1和从动件的运动规律和偏心距e,设计该凸轮轮廓曲线。4.偏置直动尖顶从动件盘形凸轮1’3’5’7’8’9’11’13’12’14’-ω1ω115’14’13’12’11’10’9’设计步骤小结:①选比例尺μl作基圆rmin;②反向等分各运动角;③确定反转后,从动件尖顶在各等份点的位置;④将各尖顶点连接成一条光滑曲线。1514131211109k9k10k11k12k13k14k15k1k2k3k5k4k6k7k8设计:潘存云ρθB0OBδ1S0S25.解析法设计凸轮的轮廓从图解法的缺点引出解析法的优点结果:求出轮廓曲线的解析表达式---已知条件:e、rmin、rT、S2=S2(δ1)、ω1及其方向。理论轮廓的极坐标参数方程:ρ=(S2+S0)2+e2原理:反转法。θ=δ1+β–β0其中:S0=r2min–e2tgβ0=e/S0tgβ=e/(S2+S0)-ω1即B点的极坐标rTπ–(θ+β0)π–(δ1+β)=两对顶角相等ω1erminβδ1参数方程。S0β0设计:潘存云其中:tg∆θ=B0BOδ1-ω1ω1αθ∆θnn实际轮廓方程是理论轮廓的等距曲线。由高等数学可知:等距线对应点具有公共的法线。ρT=ρ2+r2Tm-2ρrTcosλθT=θ+∆θ实际轮廓上对应点的T位置:位于理论轮廓B点法线n-n与滚子圆的交线上。λβT∆θ=arctgT点的极坐标参数方程为:由图有:λ=α+β其中:tgα=S2+r2min+e2ds2/dδ1±erTsinλρ-rTcosλ直接引用前面的结论θTρT直角坐标参数方程为:x=ρTcosθTy=ρTsinθT设计:潘存云OBω1设计凸轮机构时,除了要求从动件能实现预期的运动规律外,还希望凸轮机构结构紧凑,受力情况良好。而这与压力角有很大关系。定义:正压力与推杆上力作用点B速度方向间的夹角α→F”↑,若α大到一定程度时,会有:→机构发生自锁。§4-4凸轮机构设计应注意的问题αnn一、压力角不考虑摩擦时,作用力沿法线方向。FF’F”F’----有用分力,沿导路方向F”----有害分力,垂直于导路F”=F’tgαF’一定时,α↑FfF’Ff为了保证凸轮机构正常工作,要求:α[α]设计:潘存云OBω1二、凸轮基圆半径P点为速度瞬心,于是有:v=lOPω1rmin↑[α]=30˚----直动从动件;[α]=35°~45°----摆动从动件;[α]=70°~80°----回程。nnP→lOP=v2/ω1eαds2/dδ1=ds2/dδ1=lOC+lCPlCP=lOC=elCP=ds2/dδ1-etgα=S2+r2min-e2ds2/dδ1-e→α↓C(S2+S0)tgαS0=r2min-e2若发现设计结果α〉[α],可增大rmins0s2Dv2v2rmin设计:潘存云OBω1αds2/dδ1得:tgα=S2+r2min-e2ds2/dδ1+enn同理,当导路位于中心左侧时,有:lOP=lCP-lOC→lCP=ds2/dδ1+e于是:tgα=S2+r2min-e2ds2/dδ1±ee“+”用于导路和瞬心位于中心两侧;“-”用于导路和瞬心位于中心同侧;显然,导路和瞬心位于中心同侧时,压力角将减小。注意:用偏置法可减小推程压力角,但同时增大了回程压力角,故偏距e不能太大。PClCP=(S2+S0)tgαS0=rmin2-e2rmins0s2D正确偏置:导路位于与凸轮旋转方向ω1相反的位置。设计:潘存云nn提问:对于平底推杆凸轮机构:α=?0v2Oω1rmin设计:潘存云ρa-工作轮廓的曲率半径,ρ-理论轮廓的曲率半径,rT-滚子半径ρrTρa=ρ-rT0对于外凸轮廓,要保证正常工作,应使:ρminrT轮廓失真三、滚子半径的确定ρa=ρ+rTρ=rTρa=ρ-rT=0轮廓正常轮廓变尖ρ内凹ρarTrTρrTρρrTρa=ρ-rT轮廓正常外凸rTρaρ设计:潘存云对平底推杆凸轮机构,也有失真现象。Ormin可通过增大rmin解决此问题。rmin本章重点:①常用从动件运动规律:特性及作图法;②理论轮廓与实际轮廓的关系;③凸轮压力角α与基圆半径rmin的关系;④掌握用图解法设计凸轮轮廓曲线的步骤与方法;⑤掌握解析法在凸轮轮廓设计中的应用。

1 / 31
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功