ORTHOGONALPOLYNOMIALSANDCOMBINATORICSD.StantonJune26,2000Abstract.Anintroductionisgiventotheuseorthogonalpolynomialsindistanceregulargraphsandenumeration.Someexamplesineachareaaregiven,alongwithopenproblems.1.Introduction.Therearemanywaysthatorthogonalpolynomialscanoccurincombinatorics.Thispaperconcentratesontwotopics(1)eigenvaluesofdistanceregulargraphs,(2)generatingfunctionsforcombinatorialobjects.Theintroductiontothesetwotopicsiswell-knowntotheexperts,andisintendedforageneralaudience.Ratherthangiveanexhaustivesurvey,speci capplicationswhichhighlightthetechniquesofeachsubjectaregiven.For(1),theapplicationisWilson’sproofoftheErd os-Ko-Radotheorem(seex3).For(2),twoapplicationswillbegiven-Foata’sproofoftheMehlerformulaforHermitepolynomialsandtheKim-ZenglinearizationtheoremforShe erorthogonalpolynomials.Someopenproblemsaregivenalongtheway.Activeresearchtopicswhicharenotdiscussedincludegroupandalgebrarepre-sentations,tableauxandsymmetricfunctions.Thestandardreferencesfordistanceregulargraphsandassociationschemesare[5]and[9],while[25]coverstopics(1)and(2).Thestandardnotationforhypergeometricseriesfoundin[22]isusedhere.2.Associationschemesanddistanceregulargraphs.InclassicalcodingtheorytheKrawtchoukpolynomialsareimportantforseveralproblems.ThiswasgeneralizedtopolynomialsinP-polynomialassociationschemesbyDelsarte[13],andinthissectionwereviewthisbasicsetup.RecallthatagraphG=(V;E)consistsofasetVofvertices,andasetEofunorderedpairsofelementsofV,calledtheedgesofG.IfthegraphGisveryregularinaprecisesensethenassociatedtoGisa nitesequenceoforthogonalpolynomials.TheadjacencymatrixAofthegraphGisthejVj jVjmatrixde nedby(therowsandcolumnsareindexedbytheverticesofG)A(x;y)= 1ifxyisanedge,0otherwise.ResearchpartiallysupportedbyNSFgrantDMS99-7062712D.STANTONWeimaginetheadjacencymatrixaskeepingtrackofwhichpairsofverticesaredistanceonefromeachother,wherethedistancebetweentwoverticesisthelengthoftheshortestpathinthegraphconnectingthem.Thisdistanceis niteaslongasthegraphisconnected.Theadjacencymatrixcanbegeneralizedtodistancei,Ai(x;y)= 1ifd(x;y)=i,0otherwise.WeseethatA0=I,A1=A,andifthegraphisconnectedwithmaximumdistanced,thenA0+A1+ +Ad=J,theallonesmatrix.WewantaconditiononthegraphGwhichmimicsthethree-termrecurrencerelationxpi(x)= ipi+1(x)+ ip(x)+ ipi 1(x)whichissatis edbyanysetoforthogonalpolynomials.Supposethatx;y2V,withd(x;y)=i.Ifonemovesdistanceoneawayfromytoavertexz,thenwehaved(x;z)=i 1;iori+1.TheconditionweimposeontheconnectedgraphGwithmaximumdistancedisdistanceregularity,namelythematricesAifollowthesamerule:(2.1)AiA1=ci+1Ai+1+aiAi+bi 1Ai 1;0 i d;forsomeconstantsci+1,aiandbi 1.Ifsuchconstantsexist,thentheycanbefoundbyexplicitcounting.Forexample,ifwe xx;z2V,withd(x;z)=i+1,ci+1isthenumberofy2Vsuchthatd(x;y)=i;d(y;z)=1.Sinceci+1isindependentofthechoiceofx;zwithd(x;z)=i+1,thegraphGmustberegularinaveryspecialway,thusthetermdistanceregular.Wenowgivetwoexamplesofdistanceregulargraphs.The rstistheN-dimensionalcube,whichisdenotedH(N;2),andisreferredtoasthebinaryHam-mingscheme.TheverticesofH(N;2)areallN-tuplesof0’sand1’s,andanedgeconnectstwoN-tupleswhichdi erinexactlyoneposition.Thedistancebetweentwoverticesisthenumberofpositionsinwhichtheydi er.Inthiscaseci+1=i+1;ai=0;bi 1=N i+1:Forexampletocomputeci+1, xx=(0;0; ;0),andz=(1; ;1;0; ;0)wherezhasi+11’ssothatd(x;z)=i+1.Ifd(y;z)=1andd(x;y)=i,thenymustbeobtainedbyswitchingoneofthe1’sinztoa0,therearei+1choicesforthisswitch.Thesecondexample,J(n;k),theJohnsonscheme,willbeconsideredindetailinthenextsection.TheverticesVofJ(n;k)consistofallk-elementsubsetsofthe xedn-elementsetf1;2; ;ng=[n],andtwosubsets ; 2Vareconnectedbyedgeifj \ j=k 1.Inthiscasethedistanceisgivenbyd( ; )=k j \ j,andtheconstantsareci+1=(i+1)2;ai=i(n k i)+(k i)i;bi 1=(k i+1)(n i+1):Thistimetoseethatci+1=(i+1)2, xk-subsetsxandzwithjx\zj=k (i+1).Wemustcounthowmanyyaredistanceonefromzanddistanceifromx.ToORTHOGONALPOLYNOMIALSANDCOMBINATORICS3createy,wejustdeleteapointofzfromz x,andaddapointtozfromx z.Thiscanbedonein(i+1)2ways.NotealsothatjVj= nk .Thesetwoexampleshavelargesymmetrygroups-permutationsoftheverticeswhichpreservethedistanceinthegraph-whichensuredistanceregularity.Itisclearfrom(2.1)thatAi=pi(A1)isapolynomialofdegreeiinA1,wherepi(x)isanorthogonalpolynomial,aslongasci+16=0fori+1 d.Thisisthecaseifthegraphisconnected.ByconsideringtheeigenvaluesofA1wewillhavearealvaluedpolynomialinsteadofamatrixvaluedpolynomialpi(A1).ThematrixA1isarealsymmetricmatrix,soA1hasacompletesetofrealeigenvalues.Infactthereared+1distincteigenvalues, 0 1 d,withcorrespondingeigenspacesV0;V1; ;Vd.SinceAiisapolynomialinA1,theeigenvalueofAionVjispi( j).Notethatthed+1eigenvaluesaresolutionstothed+1degreepolynomialequation(thei=dcaseof(2.1)) pd( )=adpd( )+bd 1pd 1( ):Adiscreteorthogonalityrelationcanbefoundusingtheeigenspaces.LetEjbetheprojectionmapontotheeigenspaceVj.ThenwehaveAi=dXj=0pi( j)Ej:Ifthisrelationisinverted,andtheorthogonalityoftheprojectionmapsEjisused,thefollowingorthogonalityrelationsareobtained.Weletvidenotethesizeofasphereofradiu