七年级数学下册 第1章 整式的运算复习课 ppt

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

整式的运算(复习)本章知识结构:一、整式的有关概念1、单项式2、单项式的系数及次数3、多项式4、多项式的项、次数5、整式二、整式的运算(一)整式的加减法1、单项式除以单项式2、多项式除以单项式(二)整式的除法你回忆起了吗?就这些知识1、同底数的幂相乘2、幂的乘方3、积的乘方4、同底数的幂相除5、单项式乘以单项式6、单项式乘以多项式7、多项式乘以多项式8、平方差公式9、完全平方公式(二)整式的乘法练习:指出下列单项式的系数与指数各是多少。a,,,Π,一、整式的有关概念1、单项式:数与字母乘积,这样的代数式叫单项式。单独一个数或字母也是单项式。2、单项式的系数:单项式中的数字因数。3、单项式的次数:单项式中所有的字母的指数和。432yxmn32324、多项式:几个单项式的和叫多项式。5、多项式的项及次数:组成多项式中的单项式叫多项式的项,多项式中次数最高项的次数叫多项式的次数。特别注意,多项式的次数不是组成多项式的所有字母指数和!!!32ba练习:指出下列多项式的次数及项。252523nmyx,4232372abzyx6、整式:单项式与多项式统称整式。(分母含有字母的代数式不是整式)二、整式的运算(一)整式的加减法基本步骤:去括号,合并同类项。1、同底数的幂相乘法则:同底数的幂相乘,底数不变,指数相加。数学符号表示:(其中m、n为正整数)nmnmaaa(二)整式的乘法练习:判断下列各式是否正确。6623222844333)()()()(2,,2xxxxxmmmbbbaaa2、幂的乘方法则:幂的乘方,底数不变,指数相乘。数学符号表示:mnnmaa)((其中m、n为正整数)练习:判断下列各式是否正确。2244241222443243284444)()()(,)(])[(,)(mmmnnaaaxxbbbaaamnppnmaa])[((其中m、n、P为正整数)3、积的乘方法则:积的乘方,先把积中各因式分别乘方,再把所得的幂相乘。(即等于积中各因式乘方的积。)符号表示:)()(),(,)(为正整数其中为正整数其中ncbaabcnbaabnnnnnnn练习:计算下列各式。32332324)(,)2(,)21(,)2(baxybaxyz4、同底数的幂相除法则:同底数的幂相除,底数不变,指数相减。数学符号表示:nmnmaaa(其中m、n为正整数))0(1),0(10aapaaapp为正整数练习:计算nmnmmmaaxxx),()(,2)2(])2[()21(2)1.0(102222020031321判断:2350223636)()(,1)54(,2010,mmmaaaa5、单项式乘以单项式法则:单项式乘以单项式,把它们的系数、相同字母的幂分别相乘,其余的字母则连同它的指数不变,作为积的一个因式。练习:计算下列各式。)31()43()32)(4(),())(3()4()3)(2(),2()5)(1(25322323223cabcbcababababyxxnm6、单项式乘以多项式法则:单项式乘以多项式,就是根据分配律用单项式的去乘多项式的每一项,再把所得的积相加。练习:1、计算下列各式。7、多项式乘以多项式法则:多项式乘以多项式,先用一个多项式的每一项去乘另一个多项式的每一项,再把所得的积相加。)212)()(3()2)(1()3)(2)(2(),32()2)(1(yxyxyxyxcyxa2、计算下图中阴影部分的面积2bba8、平方差公式法则:两数的各乘以这两数的差,等于这两数的平方差。数学符号表示:.,,))((22也可以是代数式既可以是数其中babababa说明:平方差公式是根据多项式乘以多项式得到的,它是两个数的和与同样的两个数的差的积的形式。9、完全平方公式法则:两数和(或差)的平方,等于这两数的平方和再加上(或减去)这两数积的2倍。数学符号表示:.,,2)(;2)(222222也可以是代数式既可以是数其中bababababababa2222)(:bababa即222)(,:baba因此多项式乘法法则得到的是根据乘方的意义和完全平方公式特别说明练习:1、判断下列式子是否正确,并说明理由。要特别注意哟,切记,切记!,254)52)(2(,2)2)(2)(1(22222babayxyxyx.,,,)4(,141)121)(3(22只能表示一切有理数平方公式还是完全无论是平方差公式baxxx2、计算下列式。)73)(73)(3()9)(4)(2()6)(6)(1(yxyxyxyxyxyx22219992001)6(,9.199)5()23)(23)(4(zyxzyx3、简答下列各题:?,2)()3(.,1,2)2(.)1(,51)1(222222222应为多少则如果的值求若的值求已知znmnmznmxyyxyxaaaa(二)整式的除法1、单项式除以单项式法则:单项式除以单项式,把它们的系数、相同字母的幂分别相除后,作为商的一个因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。2、多项式除以单项式法则:多项式除以单项式,就是多项式的每一项去除单项式,再把所得的商相加。练习:计算下列各题。)5.0()4331)4()6()645)(3(])(31[)(6)2()2(()41)(1(21231221223233225346yxyxyxyxxxyxyxbabacacbammmnm再见

1 / 21
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功