专题二相互作用考点二力的合成与分解撬点·基础点重难点基础点知识点1力的合成1.合力与分力(1)定义:如果几个力共同作用产生的效果与一个力的作用效果相同,这一个力就叫作那几个力的_______,那几个力叫作这一个力的_______。(2)关系:合力与分力是______________关系。2.共点力:作用在一个物体上,作用线或作用线的_______交于一点的几个力。如图所示均是共点力。合力分力等效替代延长线3.力的合成(1)定义:求几个力的_______的过程。(2)运算法则①平行四边形定则:求两个互成角度的_______的合力,可以用表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就表示合力的______________。②三角形定则:把两个矢量的首尾顺次连接起来,第一个矢量的首到第二个矢量的尾的_____________为合矢量。知识点2力的分解1.定义:求一个力的_______的过程。力的分解是_____________的逆运算。2.遵循的原则(1)______________定则。合力共点力大小和方向有向线段分力力的合成平行四边形(2)_________定则。3.分解方法(1)力的效果分解法。(2)正交分解法。知识点3矢量和标量1.矢量:既有大小又有_______的物理量,叠加时遵循______________定则,如速度、力等。2.标量:只有大小没有_______的物理量,求和时按算术法则相加,如路程、动能等。三角形方向平行四边形方向重难点一、力的合成1.共点力合成的常用方法(1)作图法(2)解析法①合力的公式:若两个力F1、F2的夹角为θ,合力F与F1的夹角为α,如图所示,根据余弦定理可得合力的大小为F=F21+F22+2F1F2cosθ方向为tanα=F2sinθF1+F2cosθ②几种特殊情况下的力的合成a.相互垂直的两个力的合成,如上图所示,F=F21+F22,合力F与分力F1的夹角θ的正切tanθ=F2F1。b.两个大小相等、夹角为θ的力的合成,如图所示,作出的平行四边形为菱形,利用其对角线互相垂直平分的特点可求得合力F′=2Fcosθ2,合力F′与每一个分力的夹角等于θ2。c.两个大小相等、夹角为120°的力的合成,如图所示(实际是上述第二种的特殊情况),F′=2Fcos120°2=F,即合力大小等于分力。实际上对角线把画出的菱形分为两个等边三角形,所以合力与分力大小相等。(3)三角形定则三角形定则实质是平行四边形定则的变形,只是由于其特殊性,在解决矢量合成问题上显得简捷,我们才特别将其另列出来。如图所示,在△OAB中F1、F2、F合构成如图的矢量图,这三个矢量间的“组合”特点是:F1的尾连F2的首,而F1的首与F2的尾的连线就是合力F合。即F合为开始的首与最后的尾的连线。这种方法在分析力的极值问题上体现出了独特的优势。特别提醒(1)力的大小和方向一定时,其合力也一定。(2)作图法求合力,需严格用同一标度作出力的图示,作出规范的平行四边形。(3)解析法求合力,只需作出力的示意图,对平行四边形的作图要求也不太严格,重点是利用数学方法求解。2.合力的范围(1)两个力的合力范围①合力F与两分力F1、F2的夹角θ的关系:F1和F2大小一定的情况下,θ越大,F越小;θ越小,F越大。②合力大小范围:|F1-F2|≤F≤F1+F2。特别提醒两共点力F1、F2的合力F与它们的夹角θ之间的关系可用如上图所示的三角形和圆表示。合力F以O点为起点,以力F2的大小为半径的圆周上的点为终点,可知|F1-F2|≤F≤F1+F2。(2)三个共点力的合力范围:首先要看这三个力的大小是否符合三角形的性质(a+bc,|a-b|c),①若有这样的性质,则其范围为0≤F≤F1+F2+F3。②若不符合三角形的性质,则其最小值为|F1-(F2+F3)|,其中F1≥F2≥F3。③三个力等大且夹角为120°时,其合力为0。(3)多个共点力的合成:依据平行四边形定则先求出任意两个力的合力,再求这个合力与第三个力的合力,以此类推,求完为止,求多个力的合力范围可依此法将题目转化为求三个共点力合力范围。特别提醒(1)合力可能大于分力,也可能小于分力,还可能等于分力。不要形成合力总大于分力的定式思维。(2)在讨论合力的动态变化范围时,运用矢量三角形的图解法使问题更直观,分析更轻松。二、力的分解1.力的分解力的分解是合成的逆过程,实际力的分解过程是按照力的实际效果进行的,必须根据题意分析力的作用效果,确定分力的方向,然后再根据平行四边形定则进行分解。2.力的分解的多解问题条件已知示意图分解示意图解的情况已知合力的大小和方向以及两个分力的方向唯一解已知合力的大小和方向以及一个分力的大小和方向唯一解已知合力的大小和方向以及两个分力的大小两解条件已知示意图分解示意图解的情况①F2Fsinθ无解②F2=Fsinθ唯一解③FsinθF2F两解已知合力的大小和方向以及它的一个分力(F2)的大小和另一个分力(F1)的方向④F2≥F唯一解特别提醒(1)把一个力分解成两个分力,仅是一种等效替代关系,不能认为在这两个分力的方向上有两个施力者(或受力者)。(2)合力和分力都是作用在同一物体上的。(3)一个已知力和它的各个分力是同性质的力,且产生于同一个施力物体。(4)将力进行分解时,合力与分力必须构成封闭三角形,若不能构成封闭三角形,说明无解;若能构成封闭三角形,则有解,能构成几个封闭三角形就有几组解。3.分解力的方法(1)按力的产生效果分解实例分解思路地面上物体受斜向上的拉力F,拉力F一方面使物体沿水平地面前进,另一方面向上提物体,因此拉力F可分解为水平向前的力F1和竖直向上的力F2。F1=Fcosα,F2=Fsinα质量为m的物体静止在斜面上,其重力产生两个效果:一是使物体具有沿斜面下滑趋势的分力F1,二是使物体压紧斜面的分力F2。F1=mgsinα,F2=mgcosα实例分解思路质量为m的光滑小球被竖直挡板挡住而静止于斜面上时,其重力产生两个效果:一是使球压紧挡板的分力F1,二是使球压紧斜面的分力F2。F1=mgtanα,F2=mgcosα质量为m的光滑小球被悬线挂靠在竖直墙壁上,其重力产生两个效果:一是使球压紧竖直墙壁的分力F1,二是使球拉紧悬线的分力F2。F1=mgtanα,F2=mgcosα实例分解思路A、B两点位于同一平面上,质量为m的物体被AO、BO两线拉住,其重力产生两个效果:一是使物体拉紧AO线的分力F1,二是使物体拉紧BO线的分力F2。F1=F2=mg2sinα质量为m的物体被支架悬挂而静止,其重力产生两个效果:一是拉伸AB的分力F1,二是压缩BC的分力F2。F1=mgtanα,F2=mgcosα(2)力的正交分解法把力沿两个互相垂直的方向分解,叫做力的正交分解。①这是一种很有用的方法,分解是为了求合力,尤其适用于物体受多个力的情况。物体受到F1、F2、F3…,求合力F时,可把各力沿相互垂直的x轴、y轴分解,F1分解为F1x和F1y,F2分解为F2x和F2y,F3分解为F3x和F3y…,则x轴上的合力Fx=F1x+F2x+F3x+…,y轴上的合力Fy=F1y+F2y+F3y+…合力F=F2x+F2y,设合力与x轴夹角为θ,则tanθ=FyFx。②正交分解时建立坐标轴的原则a.在静力学中,以少分解力和容易分解力为原则。b.在动力学中,以加速度方向的直线和垂直于加速度方向的直线为坐标轴建立坐标系,这样牛顿第二定律表达式变为Fy=0Fx=ma或Fx=0Fy=mac.尽量不分解未知力。③正交分解法的步骤a.以力的作用点为原点建立直角坐标系,标出x轴和y轴,如果这时物体处于平衡状态,则两轴的方向可根据方便自己选择;如果力不平衡而产生加速度,则x轴(或y轴)一般要和加速度的方向重合(有时分解加速度);b.将与坐标轴成角度的力分解成x轴方向和y轴方向的两个分力,并在图上标明,用符号Fx和Fy表示;c.在图上标出力与x轴、y轴的夹角,然后列出Fx、Fy的数学表达式,如F与x轴夹角为θ,则Fx=Fcosθ,Fy=Fsinθ,与两轴重合的力就不需要分解了;d.列出x轴方向上的各分力的合力和y轴方向上的各分力的合力的两个方程,然后再求解。特别提醒力的效果分解法、正交分解法是常见的解题方法,一般情况下,物体只受三个力的情形下,力的效果分解法解题较为简单,在三角形中找几何关系,利用几何关系或三角形相似求解;而物体受三个以上力的情况多用正交分解法,但也要视题目具体情况而定。1.思维辨析(1)两个力的合力一定大于任一个分力。()(2)合力和分力是等效替代的关系。()(3)1N和2N的力的合力一定等于3N。()(4)两个分力大小一定,夹角越大,合力越大。()(5)8N的力能够分解成5N和3N的两个分力。()(6)力的分解必须按效果分解。()(7)位移、速度、加速度、力和时间都是矢量。()×√√××××2.如图所示,一轻绳的两端分别固定在不等高的A、B两点,现用另一轻绳将一物体系于O点,设轻绳AO、BO相互垂直,α>β,且两绳中的拉力分别为FA、FB,物体受到的重力为G,下列说法正确的是()A.FA一定大于GB.FA一定大于FBC.FA一定小于FBD.FA与FB大小之和一定等于G解析对物体受力分析如图所示,由三力平衡的知识可知,FA、FB的合力大小等于G,方向竖直向上,FA=Gsinα,FB=Gsinβ,故FA一定小于G,A错误;因为α>β,故FA一定大于FB,B正确,C错误;FA与FB大小之和大于G,D错误。3.如图所示,两个相同的光滑小球甲和乙放在倾角为45°的斜面上,被一固定在斜面上的竖直挡板挡住,设每个小球的重力大小为G,甲球对乙球的作用力大小为F1,斜面对乙球的作用力大小为F2,则以下结论正确的是()A.F1<F2B.G<F1C.G=F1D.F1=F2解析将乙球的重力分解,由平衡条件可得甲球对乙球的作用力大小F1=Gsin45°,斜面对乙球的作用力大小为F2=Gcos45°,显然,F1=F2,G>F1,选项D正确,A、B、C均错误。撬法·命题法解题法[考法综述]本考点知识在高考中属于必考内容,虽然单一命题考查本考点知识的频度较低,但交汇命题中常以受力分析、牛顿运动定律、功能关系及电磁学等知识为载体进行考查,同时本考点涉及的物理知识、方法广泛应用于各类物理问题中,因此复习本考点应以夯实基础知识掌握基本方法为主,通过复习应掌握:2个概念——力的合成、力的分解2个定则——平行四边形定则、三角形定则2种方法——力分解时的两种方法:按实际效果分解和正交分解法1个关系——合力与分力的关系命题法1力的合成问题典例1如图所示是剪式千斤顶,当摇动把手时,螺纹轴就能迫使千斤顶的两臂靠拢,从而将汽车顶起。当车轮刚被顶起时汽车对千斤顶的压力为1.0×105N,此时千斤顶两臂间的夹角为120°,则下列判断正确的是()A.此时两臂受到的压力大小均为5.0×104NB.此时千斤顶对汽车的支持力为2.0×105NC.若继续摇动把手,将汽车顶起,两臂受到的压力将增大D.若继续摇动把手,将汽车顶起,两臂受到的压力将减小[解析]分解千斤顶受到的压力,得到此时两臂受到的压力大小均为1.0×105N,A错误;由牛顿第三定律,千斤顶对汽车的支持力大小为1.0×105N,B错误;若继续摇动把手,两臂间的夹角减小,而合力不变,故两分力减小,即两臂受到的压力减小,C错误,D正确。【解题法】解答共点力的合成问题时的几点注意(1)两个分力一定时,夹角θ越大,合力越小。(2)合力一定,两等大分力的夹角越大,两分力越大。(3)合力可以大于分力,等于分力,也可以小于分力的大小。(4)合力与它的分力是等效替代关系,在进行有关力的计算时,如果已计入了合力,就不能再计入分力。如果已计入了分力,就不能再计入合力。命题法2力的分解问题典例2如图所示,墙上有两个钉子a和b,它们的连线与水平方向的夹角为45°,两者的高度差为l。一条不可伸长的轻质细绳一端固定于a点,另一端跨过光滑钉子b悬挂一质量为m1的重物。在