什么是光?什么是光子?光是如何产生的?为什么说光是一种振动波,光又是粒子簇?进入词条光子光子是传递电磁相互作用的基本粒子,是一种规范玻色子。光子是电磁辐射的载体,而在量子场论中光子被认为是电磁相互作用的媒介子。与大多数基本粒子相比,光子的静止质量为零,这意味着其在真空中的传播速度是光速。与其他量子一样,光子具有波粒二象性:光子能够表现出经典波的折射、干涉、衍射等性质;而光子的粒子性则表现为和物质相互作用时不像经典的粒子那样可以传递任意值的能量,光子只能传递量子化的能量。对可见光而言,单个光子携带的能量约为4×10-19焦耳,这样大小的能量足以激发起眼睛上感光细胞的一个分子,从而引起视觉。除能量以外,光子还具有动量和偏振态,但单个光子没有确定的动量或偏振态。光子-基本简介命名光子操控光子起初被爱因斯坦命名为光量子。光子的现代英文名称photon源于希腊文φῶς(在罗马字下写为phôs),是由物理化学家吉尔伯特·路易士在他的一个假设性理论中创建的。光子的现代英文名称photon源于希腊文φῶς(在罗马字下写为phôs),是由物理化学家吉尔伯特·路易士在他的一个假设性理论中创建的。在路易士的理论中,photon指的是辐射能量的最小单位,其“不能被创造也不能被毁灭”。在路易士的理论中,photon指的是辐射能量的最小单位,其“不能被创造也不能被毁灭”。尽管由于这一理论与大多数实验结果相违背而从未得到公认,photon这一名称却很快被很多物理学家所采用。尽管由于这一理论与大多数实验结果相违背而从未得到公认,photon这一名称却很快被很多物理学家所采用。根据科幻小说作家、科普作家艾萨克·阿西莫夫的记载,阿瑟·康普顿于1927年首先用photon来称呼光量子。根据科幻小说作家、科普作家艾萨克·阿西莫夫的记载,阿瑟·康普顿于1927年首先用photon来称呼光量子。光子是电磁辐射的量子,传递电磁相互作用的规范粒子,记为γ。其静质量为零,不荷电,其能量为普朗克常量和电磁辐射频率的乘积,ε=hv,在真空中以光速c运行,其自旋为1,是玻色子。早在1900年,M.普朗克解释黑体辐射能量分布时作出量子假设,物质振子与辐射之间的能量交换是不连续的,一份一份的,每一份的能量为hv;1905年A.爱因斯坦进一步提出光波本身就不是连续的而具有粒子性,爱因斯坦称之为光量子;1923年A.H.康普顿成功地用光量子概念解释了X光被物质散射时波长变化的康普顿效应,从而光量子概念被广泛接受和应用,1926年正式命名为光子。量子电动力学确立后,确认光子是传递电磁相互作用的媒介粒子。带电粒子通过发射或吸收光子而相互作用,正反带电粒子对可湮没转化为光子,它们也可以在电磁场中产生。光子是光线中携带能量的粒子。一个光子能量的多少与波长相关,波长越短,能量越高。当一个光子被分子吸收时,就有一个电子获得足够的能量从而从内轨道跃迁到外轨道,具有电子跃迁的分子就从基态变成了激发态。光子具有能量,也具有动量,更具有质量,按照质能方程,E=MC^2=HV,求出M=HV/C^2,光子由于无法静止,所以它没有静止质量,这儿的质量是光子的相对论质量。光子-电磁理论光子晶体结构在物理学领域,光子通常用希腊字母γ(音:Gamma)表示,这一符号有可能来自由法国物理学家维拉德(PaulUlrichVillard)于1900年发现的伽玛射线[14][15],伽玛射线由卢瑟福和英国物理学家安德雷德(EdwardAndrade)于1914年证实是电磁辐射的一种形式[16]。在物理学领域,光子通常用希腊字母γ(音:Gamma)表示,这一符号有可能来自由法国物理学家维拉德(PaulUlrichVillard)于1900年发现的伽玛射线[14][15],伽玛射线由卢瑟福和英国物理学家安德雷德(EdwardAndrade)于1914年证实是电磁辐射的一种形式[16]。在化学和光学工程领域,光子经常被写为hν,即用它的能量来表示;有时也用f来表示其频率,即写为hf。在化学和光学工程领域,光子经常被写为hν,即用它的能量来表示;有时也用f来表示其频率,即写为hf。物理性质用费曼图表示的正电子-负电子散射(也叫做BhaBha散射),波浪线表示交换虚光子的过程。从波的角度看,光子具有两种可能的偏振态和三个正交的波矢分量,决定了它的波长和传播方向;从粒子的角度看,光子静止质量为零[4],电荷为零[17],半衰期无限长。光子是自旋为1的规范玻色子,因而轻子数、重子数和奇异数都为零。光子的静止质量严格为零,本质上和库仑定律严格的距离平方反比关系等价,如果光子静质量不为零,那么库仑定律也不是严格的平方反比定律[18]。所有有关的经典理论,如麦克斯韦方程组和电磁场的拉格朗日量都依赖于光子静质量严格为零的假设。从爱因斯坦的质能关系和光量子能量公式可粗略得到光子质量的上限,这里即是光子质量的上限,也是任意电磁波的频率,位于超低频段的舒曼共振已知最低频率约为7.8赫兹。这个值仅比现在得到的广为接受的上限值高出两个数量级。光子能够在很多自然过程中产生,例如:在分子、原子或原子核从高能级向低能级跃迁时电荷被加速的过程中会辐射光子,粒子和反粒子湮灭时也会产生光子;在上述的时间反演过程中光子能够被吸收,即分子、原子或原子核从低能级向高能级跃迁,粒子和反粒子对的产生。在真空中光子的速度为光速,能量和动量p之间关系为(公式缺);相对论力学中一般质量为?的粒子的能量动量关系为(公式缺)。光子的能量和动量仅与光子的频率ν有关;或者说仅与波长λ有关光子的能量和动量仅与光子的频率ν有关。从光子的能量、动量公式可导出一个推论:粒子和其反粒子的湮灭过程一定产生至少两个光子。原因是在质心系下粒子和其反粒子组成的系统总动量为零,由于动量守恒定律,产生的光子的总动量也必须为零;由于单个光子总具有不为零的大小为的动量,系统只能产生两个或两个以上的光子来满足总动量为零。产生光子的频率,即它们的能量,则由能量动量守恒定律(四维动量守恒)决定。而从能量-动量守恒可知,粒子和反粒子湮灭的逆过程,即双光子生成电子-反电子对的过程不可能在真空中自发产生。光子具有波粒二象性,即说光子像一粒一粒的粒子的特性又有像声波一样的波动性,光子的波动性有光子的衍射而证明,光子的粒子性是由光电效应证明。上面有人认为光子的动质量为零是错误的,光子的静质量为零,否则的话其动质量将为无穷大。但其动质量却是存在的,计算方法是这样的:首先,由于频率为v的光子的能量为E=hv,(其中h为普朗克常数),故由质能公式可得其质量为:m=E/c^2=hv/c^2其中c^2表示光速的平方。该方法由爱因斯坦首先提出。经典的波有群速度与相速度之分。光子的速度就是光速。光子有速度、能量、动量、质量。光子不可能静止。光子可以变成其它物质(如一对正负电子),但能量守恒、动量守恒。华中科大罗俊教授重新确定光子静止质量上限光子火箭发动机华中科技大学教授重新确定光子静止质量上限,有业内人士认为:光子静止质量为零是经典电磁理论的基本假设之一。但有些科学家则认为,光子可能有静止质量。如果实验最终检测到光子存在静止质量,那么有些经典理论将要有所变化。在2月28日出版的美国《物理学评论快报》(PhysicalReviewLetters)上,有专文介绍说:“一项由中国科学家罗俊等完成的新的实验表明,在任何情况下,光子的静止质量都不会超过10的负54次方千克,这一结果是之前已知的光子质量上限的1/20。”罗俊和他的同事通过一种新颖的实验方法,在一个山洞实验室里将光子静止质量的上限,进一步提高了至少一个数量级。据悉,如果光子存在静止质量,虽然不会影响到人们的日常生活,但其产生的后果将是根本性的———例如,光速将随波长的改变而变化,并且光波将像声波一样能够产生纵向振动。1.光就是一种电磁波(高频)2.这是爱因斯坦为了解释光电效应而提出的.光的能量是不连续的,而是一份一份的,每一份就叫光量子,简称为光子3.产生光的方法很多最常见的就是用各种光源4.光的本质就是波粒二象性,就是说光不但能发生波的所有现象(例如反射,衍射,干涉,多普勒效应),同时也具有粒子性(例如,光电效应,康普顿效应)光的干涉等现象体现了波的特性光的反射等现象体现了粒子的特性所以说光具有波粒二象性我们从出生起,就与光有千丝万缕、不可断绝的联系,但光究竟是什么呢?距今300多年前,赫赫有名的英国物理学家兼数学家牛顿创立了光学这门学科。当时,牛顿认为光是由一种弹性小球组成的。这就是所谓的光的微粒说。光的微粒说可以解释光的反射和光的折射现象。对于光的反射现象,可以设想打弹子球的情形。当弹子球在行进过程中撞到边框上就会被弹回。光的反弹也是这样,光的粒子投射到像镜子那样光滑的表面就可以单向反射。对于光的折射现象,牛顿也提出了解释。按照万有引力定律,当光从光疏物质(如空气)进入光密物质(如水或玻璃)时,由于是两种不同的光媒质,它们对光的吸引作用就有差别。一般来说,光密物质密度较大,它对光的吸引作用强些;光疏物质密度较小,它对光的吸引作用弱些。这样,光束由空气进入水或玻璃中时,就会折向密度较大的水或玻璃的一侧。光的微粒说在解释一些光的色散问题时遇到了困难。跟牛顿同时代的荷兰物理学家惠更斯,提出了完全不同的另一种学说——光的波动说。他认为光与声音一样,都是一种空气振动过程,这种振动像水波那样是一波接一波传递的。这就是光的波动说。两位科学家各持己见,互不相让。当时牛顿在科学界的威望要比惠更斯高,所以大多数人附和牛顿的看法,于是微粒说占了上风。1864年,英国物理学家麦克斯韦在仔细研究了光波后指出:光波是与无线电波、X射线以及γ射线一样的电磁波,它们之间的区别仅仅是波长不同。无线电波一般以米为单位,光波则比无线电波要短得多。这样,麦克斯韦使光的波动说被大家承认。这种光的波动理论,虽能比较满意地解释光在传播过程中产生的反射、折射和干涉现象,但却解释不了光电效应。德国大名鼎鼎的物理学巨匠爱因斯坦于1905年提出了光子说。光子说认为,光能是聚集成一份一份的,以不连接的形式在空中传播。每一份光叫做一个光量子。光量子既是一种微粒,又是一种电波。光子说把几百年来争论不休的两种观点,即光的微粒说和波动说统一了起来。今后对光的本质很可能还会有新的认识。但到目前为止,光子说是最完美的解释。根据目前的说法,从本质上来解释只能达到这些。声音呢则是一种机械波,对这种波的认识可以说人类已经十分熟悉了严格地说,光是人类眼睛所能观察到的一种辐射。由实验证明光就是电磁辐射,这部分电磁波的波长范围约在红光的0.77微米到紫光的0.39微米之间。波长在0.77微米以上到1000微米左右的电磁波称为“红外线”。在0.39微米以下到0.04微米左右的称“紫外线”。红外线和紫外线不能引起视觉,但可以用光学仪器或摄影方法去量度和探测这种发光物体的存在。所以在光学中光的概念也可以延伸到红外线和紫外线领域,甚至X射线均被认为是光,而可见光的光谱只是电磁光谱中的一部分。光具有波粒二象性,即既可把光看作是一种频率很高的电磁波(1012~1015赫兹),也可把光看成是一个粒子,即光量子,简称光子。因斯坦的光量子理论:爱因斯坦的光量子假说恢复了光的粒子性,使人们终于认清了光的波粒双重性格,而且在它的启发下,发现了德布罗意物质波,使人们认清了微观世界的波粒二象性,为后来量子力学的建立奠定了基础。爱因斯坦大胆假设:光和原子电子一样也具有粒子性,光就是以光速C运动着的粒子流,他把这种粒子叫光量子。同普朗克的能量子一样,每个光量子的能量也是E=hν,根据相对论的质能关系式,每个光子的动量为p=E/c=h/λ列别捷夫(П.Н.Лебедевl866—1911)的光压实验证实了光的动量和能量的关系式。根据光量子假说,爱因斯坦顺利地推出普朗克公式,并且还提出了一个光电效应公式。光量子假说成功地解释了光电效应。当紫外线这一类的波长较短的光线照射金属表面时,金属中便有电子逸出,这种现象被称为光电效应。它是由赫兹(H.R.Hertzl857—1894)和勒纳德(P