中图分类号:TM351论文编号:102870312-S140学科分类号:080804硕士学位论文永磁同步电机PI参数自整定研究生姓名丁文双学科、专业电机与电器研究方向电机控制指导教师胡育文教授南京航空航天大学研究生院自动化学院二О一二年三月NanjingUniversityofAeronauticsandAstronauticsTheGraduateSchoolCollegeofAutomationThePIParametersself-turningforPMSMservosystemAThesisinElectricalEngineeringByDingWenshuangAdvisedbyProfessorHuYuwenSubmittedinPartialFulfillmentoftheRequirementsfortheDegreeofMasterofEngineeringMarch,2012承诺书本人郑重声明:所呈交的学位论文,是本人在导师指导下,独立进行研究工作所取得的成果。尽我所知,除文中已经注明引用的内容外,本学位论文的研究成果不包含任何他人享有著作权的内容。对本论文所涉及的研究工作做出贡献的其他个人和集体,均已在文中以明确方式标明。本人授权南京航空航天大学可以有权保留送交论文的复印件,允许论文被查阅和借阅,可以将学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存、汇编学位论文。(保密的学位论文在解密后适用本承诺书)作者签名:日期:南京航空航天大学硕士学位论文i摘要随着电力电子技术、微处理技术、稀土永磁材料、半导体技术、控制理论和电机技术的飞速发展,永磁同步电机(以下简称PMSM)以其体积小、气隙磁通密度大、转矩容量比和转矩惯量比高以及没有转子励磁损耗等优点,已经逐渐成为了伺服系统电机选型的“主流”[1]。矢量控制策略的提出和发展使得永磁同步电机的控制性能有了进一步的提高,PMSM矢量控制系统结构一般采用内外环双环结构,内环实现快速电流控制,外环实现速度控制。内外环调节器一般均采用算法简单、稳态性能好、可靠性高的PID调节器。PID调节器的性能取决于PID调节器的参数,因此,高性能伺服驱动系统应具有控制器参数自整定功能。本文针对PMSM交流伺服系统PI参数自整定展开了研究。首先,本文分析了面贴式PMSM的数学模型,阐述了系统的矢量控制策略,确定了id=0的电流控制方案,然后基于系统的控制框图,在MATLAB/Simulink环境下搭建了基于矢量控制策略的PMSM交流伺服系统的仿真模型。其次,本文分离线式和在线式两部分介绍了几种PI参数自整定方法,通过分析各方案优缺点,选择了遗传算法对PMSM伺服系统速度环和电流环PI参数进行离线自整定,采用模糊PI调节器对速度环PI参数在线自整定。然后通过在MATLAB中对这两种方案建模仿真,验证了算法的可行性。最后本文在一台2.3kW的PMSM交流伺服平台上完成了系统的实验,在以Freescale公司的高性能DSP芯片MC56F8346为核心的软硬件环境中编写了遗传算法和模糊PI调节器的程序对PMSM伺服系统PI参数的离线和在线整定进行实验研究。实验结果验证了算法的可行性,将使用遗传算法离线整定的PI参数应用到系统中,系统速度响应迅速,稳态精度好;使用模糊逻辑在线整定速度环PI参数,使PMSM伺服系统对系统参数摄动具有较好的鲁棒性。关键词:高性能,永磁同步电机,伺服系统,矢量控制,模糊PI,遗传算法,鲁棒性,自适应,参数自整定永磁同步电机PI参数自整定iiAbstractWiththerapiddevelopmentofpowerelectronictechnology,themicroprocessingtechnology,rareearthpermanentmagnetmaterials,semiconductortechnology,controltheoryandmotortechnology,ThePermanentmagnetsynchronousmotorwhichhasmanyadvantagessuchassmallsize,bigairgapfluxdensity,bigratiooftorquecapacityandhighefficiencyhasgraduallybecomethemainstreamofmotorselectionforservosystem.TheVectorControlstrategyanditsdevelopmentmakesthepermanentmagnetsynchronousmotorcontrolperformanceimprovedsignificantly.ThestructureofPMSMvectorcontrolsystemusuallyemploytownestedloops,withtheinnerloopimplementthefastcurrentcontrolandtheouterlooprealizesthespeedadjust.TheinnerandouterloopcontrollersgenerallyadoptPIDregulatorforitssimplicity,stableperformanceandhighreliability.TheperformanceofthePIDregulatordependsontheparametersofthePIDregulator.Therefore,high-performanceservodrivesystemshouldhavetheself-tuningfunctionofthecontrollerparameters.Thispaperfocusesontheresearchofself-tuningPIparametersforthePMSMservosystem.Firstly,SurfaceMountedPMSMmathematicalmodelisanalyzed,controlstrategiesareelaborated,theid=0currentcontrolschemeisdetermine,thensimulationmodelofthePMSMACservoSystembasedonvectorcontrolstrategiesisbuiltusingcontrolblockdiagramofthesystembasedonMATLAB/Simulinkenvironment.Secondly,thearticleintroducedseveralPIparametertuningmethodbyclassifyingthemintoofflineandonlinetwoparts.Byanalyzingtheadvantagesanddisadvantagesofeachprogram,thepaperselectsageneticalgorithmforPMSMservosystemspeedloopandcurrentloopPIparametersforofflineself-tuning,anduseson-lineself-tuningfuzzyPIregulatortotunethespeedloopPIparametersonline.ThefeasibilityofbothmethodsareverifiedthroughMATLABmodelingandsimulation.Finally,systemexperimentsarefinishedina2.3kWPMSMSERVOplatform,geneticalgorithmsandfuzzyPIregulatorprogramarewritteninthehardwareandsoftwareenvironmentwiththeFreescale'shighperformanceDSPchipMC56F8346asthecoreoftoPMSMservosystem.Experimentalresultsdemonstratethefeasibilityofthealgorithm:usingthegeneticalgorithmofflinetuningofPIparametersimprovessystemspeedresponse,steadystateaccuracy;usingthefuzzylogicon-linetuningforthespeedloopmakesthesystemmorerobustthanthetraditionalsystemwhendisturbanceappears.南京航空航天大学硕士学位论文iiiKeywords:highperformance,permanentmagnetsynchronousmotor,servosystem,vectorcontrol,fuzzyPI,geneticalgorithm,robustness,adaptiation,Parametersselftuning永磁同步电机PI参数自整定iv目录第一章绪论...........................................................................................................................................11.1课题背景....................................................................................................................................11.1.1伺服系统的发展概述................................................................................................................11.1.2交流伺服系统的发展现状........................................................................................................11.1.3伺服系统的发展趋势................................................................................................................41.2课题的研究意义........................................................................................................................51.3PID参数自整定的发展概述.....................................................................................................61.3.1过程频率响应法........................................................................................................................61.3.2智能整定法...........................................................................