习题课简单的三角变换综合运用三角公式进行三角变换,常用的变换:变换角度、变换名称、变换解析式结构.12——三角函数式化简的一般要求:三角函数种数尽量少;项数尽量少;次数尽量低;尽量使分母不含三角函数式;尽量使被开方数不含三角函数式;能求出的值应尽量求出值.依据三角函数式的结构特点,常采用的变换方法:异角化同角;异名化同名;异次化同次;高次三角化简.求值.降次.常见的有给变换的基本题型化简、求值和证明角求值,给值求值,给值求角.()3①给角求值的关键是正确地分析角已知角与未知角之间的关系,准确地选用公式,注意转化为特殊值.②给值求值的关键是分析已知式与待求式之间角、名称、结构的差异,有目的地将已知式、待求式的一方或两方加以变换,找出它们之间的联系,最后求待求式的值.③给值求角的关键是求出该角的某一三角函数值,讨论角的范围,求出该角.它包括无条件的恒等式和附加条件恒等式的证明.常用方法:从左推到右;从右推到左证明.;左右互推.二倍角公式中的sin2α,cos2α能否用tanα来表示?2222sincos2tansin22sincossincos1tan,22222222cossin1tancos2cossin,cossin1tan2sin22tantan2.cos21tan这三个公式常被称为“万能公式”提示:能.齐次型!1.定义运算a⊕b=a2-ab-b2,则sinπ6⊕cosπ6=()A.-12+34B.-12-34C.1+34D.1-34【解析】sinπ6⊕cosπ6=sin2π6-sinπ6cosπ6-cos2π6=-12-34.2.(2012·永州模拟)若f(sinx)=3-cos2x,则f(cosx)=()A.3-cos2xB.3-sin2xC.3+cos2xD.3+sin2x【解析】因为f(sinx)=3-(1-2sin2x)=2+2sin2x,所以f(x)=2+2x2,所以f(cosx)=2+2cos2x=3+cos2x.3.若1+tanx1-tanx=2013,则1cos2x+tan2x的值为2013.【解析】1cos2x+tan2x=1+sin2xcos2x=sinx+cosx2cos2x-sin2x=cosx+sinxcosx-sinx=1+tanx1-tanx=2013.4.已知tan(α+β)=25,tan(β-π4)=14,那么tan(α+π4)的值是322.【解析】tan(α+π4)=tan[(α+β)-(β-π4)]=tanα+β-tanβ-π41+tanα+β·tanβ-π4=25-141+25·14=322.5.已知α∈(π2,π),化简21-sinα+2+2cosα=2sinα2.【解析】因为21-sinα+2+2cosα=2sinα2-cosα22+4cos2α2=2|sinα2-cosα2|+2|cosα2|,且α2∈(π4,π2),所以原式=2(sinα2-cosα2)+2cosα2=2sinα2.1.cos33°cos87°+sin33°cos177°的值为()(A)(B)(C)(D)【解析】选B.cos33°cos87°+sin33°cos177°=cos33°sin3°-sin33°cos3°=sin(3°-33°)=-sin30°=.1212323212变结构与凑结构,逆用公式!2.已知tan(α+β)=3,tan(α-β)=5,则tan2α=()(A)(B)(C)(D)【解析】选D.tan2α=tan[(α+β)+(α-β)]18184747tan()tan()3584.1tan()tan135147变角与凑角!3.如果cos2α-cos2β=a,则sin(α+β)sin(α-β)等于()(A)(B)(C)-a(D)a【解析】选C.sin(α+β)sin(α-β)=(sinαcosβ+cosαsinβ)(sinαcosβ-cosαsinβ)=sin2αcos2β-cos2αsin2β=(1-cos2α)cos2β-cos2α(1-cos2β)=cos2β-cos2α=-a.a 2a24.若则2sin2α-cos2α=_____.【解析】由得,2+2tanα=3-3tanα,答案:3tan()423tan()42,1tan3,1tan21tan.5222222222sincos2tan12sincossincostan1而212325.1261252326齐次型!5.化简:=______.【解析】答案:cos3sin121213cos3sin2(cossin)12122122122(coscossinsin)3123122cos()2cos2.31242合一变形!一通过恒等变形后的求值问题【例1】(2011·广东卷)已知函数f(x)=2sin(13x-π6),x∈R.(1)求f(0)的值;(2)设α,β∈[0,π2],f(3α+π2)=1013,f(3β+2π)=65,求sin(α+β)的值.【解析】(1)f(0)=2sin(-π6)=-2sinπ6=-1.(2)因为1013=f(3α+π2)=2sin[13×(3α+π2)-π6]=2sinα,65=f(3β+2π)=2sin[13×(3β+2π)-π6]=2sin(β+π2)=2cosβ,所以sinα=513,cosβ=35,又α、β∈[0,π2],所以cosα=1-sin2α=1-5132=1213,sinβ=1-cos2β=1-352=45,故sin(α+β)=sinαcosβ+cosαsinβ=513×35+1213×45=6365.【点评】对于附加条件求值问题,要先看条件可不可以变形或化简,然后看所求式子能否化简,再看它们之间的相互联系,通过分析找到已知与所求的联系.已知:0<α<π4,0<β<π4,且3sinβ=sin(2α+β),4tanα2=1-tan2α2,求α+β的值.素材1【解析】因为3sinβ=sin(2α+β),即3sin(α+β-α)=sin(α+β+α),所以3sin(α+β)cosα-3cos(α+β)sinα=sin(α+β)·cosα+cos(α+β)sinα,所以2sin(α+β)cosα=4cos(α+β)sinα,即tan(α+β)=2tanα.又4tanα2=1-tan2α2⇒tanα=2tanα21-tan2α2=12,所以tan(α+β)=1,又0<α+β<π2,所以α+β=π4.二三角恒等式的证明【例2】(1)已知2sinβ=sinα+cosα,sin2γ=2sinα·cosα.求证:cos2γ=2cos2β;(2)已知5sinα=3sin(α-2β),求证:tan(α-β)+4tanβ=0.【证明】(1)4sin2β=1+2sinαcosα,所以4sin2β=1+sin2γ,所以1-sin2γ=2-4sin2β=2(1-2sin2β),即cos2γ=2cos2β.(2)因为5sinα=3sin(α-2β),所以5sin[(α-β)+β]=3sin[(α-β)-β],所以5sin(α-β)·cosβ+5cos(α-β)·sinβ=3sin(α-β)·cosβ-3cos(α-β)·sinβ,所以2sin(α-β)·cosβ+8cos(α-β)·sinβ=0,依题意知,β≠kπ+π2,α-β≠kπ+π2,k∈Z.所以tan(α-β)+4tanβ=0.【点评】(1)结论中不含α,所以从条件中消去α即可.(2)把条件中的角进行拆拼,使出现α-β,α,实现已知角向未知角转化即可.求证:sinx+cosx-1sinx-cosx+1sin2x=tanx2.素材2【解析】sinx+cosx-1sinx-cosx+1sin2x=sinx+1-2sin2x2-1sinx-1+2sin2x2+1sin2x=2sinx2cosx2-2sin2x22sinx2cosx2+2sin2x24sinx2cosx2cosx=cosx2-sinx2cosx2+sinx2·sinx2cosx2cosx=cos2x2-sin2x2sinx2cosx2·cosx=cosx·sinx2cosx2·cosx=tanx2.三解综合问题【例3】已知-π2<x<0,sinx+cosx=15.(1)求sinx-cosx的值;(2)求3sin2x2-2sinx2cosx2+cos2x2tanx+1tanx的值.【解析】(1)方法1:由sinx+cosx=15,得2sinxcosx=-2425,所以(sinx-cosx)2=1-2sinxcosx=4925.因为-π2<x<0,所以sinx<0,cosx>0,sinx-cosx<0.所以sinx-cosx=-75.方法2:由sinx+cosx=15sin2x+cos2x=1得25cos2x-5cosx-12=0(-π2<x<0),解得cosx=45或cosx=-35(舍去),所以sinx=-35,所以sinx-cosx=-75.(2)3sin2x2-2sinx2cosx2+cos2x2tanx+1tanx=2sin2x2-sinx+1sinxcosx+cosxsinx=sinxcosx·(2-cosx-sinx)=-1225×(2-15)=-108125.【点评】(1)由sinx+cosx的值,求sinx-cosx的值是常规问题,对于较复杂的问题,可通过解方程组:sinx+cosx=?或sinx-cosx=?sin2x+cos2x=1求出sinx、cosx的值后再进行解决.(2)切化弦、平方、降次、活用公式是化简、求值常用的方法.已知sin2α=35,α∈(5π4,3π2).(1)求cosα的值;(2)求满足sin(α-x)-sin(α+x)+2cosα=-1010的锐角x.素材3【解析】(1)因为5π4α3π2,所以5π22α3π.所以cos2α=-1-sin22α=-45.由cos2α=2cos2α-1,所以cosα=-1010.(2)因为sin(α-x)-sin(α+x)+2cosα=-1010,所以2cosα(1-sinx)=-1010,所以sinx=12.因为x为锐角,所以x=π6.备选例题化简sin2αsin2β+cos2αcos2β-12cos2α·cos2β.【解析】方法1:(复角→单角,从“角”入手)原式=sin2αsin2β+cos2αcos2β-12(2cos2α-1)(2cos2β-1)=sin2αsin2β+cos2αcos2β-12(4cos2αcos2β-2cos2α-2cos2β+1)=sin2αsin2β-cos2αcos2β+cos2α+cos2β-12=sin2αsin2β+cos2αsin2β+cos2β-12=sin2β+cos2β-12=12.方法2:(从“名”入手,异名化同名)原式=sin2αsin2β+(1-sin2α)cos2β-12cos2αcos2β=cos2β-sin2αcos2β-12cos2αcos2β=cos2β-cos2β(sin2α+12cos2α)=12(1+cos2β)-cos2β(1-cos2α2+cos2α2)=12.方法3:(从“幂”入手,利用降幂公式先降次)原式=1-cos2α2·1-cos2β2+1+cos2α2·1+cos2β2-12cos2α·cos2β=14(1+cos2α·cos2β-cos2α-cos2β)+14(1+cos2α·cos2β+cos2α+cos2β)-12·cos2α·cos2β=12.方法4:(从“形”入手,利用配方法,先对二次项配方)原式=(sinα·sinβ-co