高数(上)期末总复习函数的定义反函数隐函数反函数与直接函数之间关系基本初等函数复合函数初等函数函数的性质单值与多值奇偶性单调性有界性周期性双曲函数与反双曲函数函数:主要内容函数极限及连续典型例题例1.)sin1tan1(lim310xxxx求解法讨论则设,)(lim,0)(limxgxf)](1ln[)(lim)()](1lim[xfxgxgexf)]()[(limxfxge.)()(limxfxge))(~)](1ln[:xfxf等价无穷小代换1310)]1sin1tan1(1[limxxxx原式310]sin1sintan1[limxxxxx301sin1sintanlimxxxxx301cos)sin1()cos1(sinlimxxxxxxxxxxxxxcos)sin1(1cos1sinlim2021.21e原式解:例2).(,1)(lim,2)(lim,)(023xpxxpxxxpxpxx求且是多项式设解,2)(lim23xxxpx),(2)(23为待定系数其中可设babaxxxxp,1)(lim0xxpx又)0(~2)(23xxbaxxxxp.1,0ab从而得xxxxp232)(故例3.1,2cos1,1)(的连续性讨论xxxxxf解改写成将)(xf1,111,2cos1,1)(xxxxxxxf.),1(),1,1(),1,()(内连续在显然xf,1时当x)(lim1xfx2)1(lim1xx)(lim1xfx2coslim1xx.0)(lim)(lim11xfxfxx.1)(间断在故xxf,1时当x)(lim1xfx2coslim1xx.0)(lim1xfx)1(lim1xx.0)1()(lim)(lim11fxfxfxx.1)(连续在故xxf.),1()1,()(连续在xf2(3),0sinsin,01xxxxyxxx例4:讨论的连续性,并且指出间断点的类型。)3(sin)3(limsin)3(lim03xxxx解:3)3(limsin)3(lim003x为可去间断点。,3sin)3(lim,01sinlim020xxxxxxx.1,0是无穷间断点为跳跃间断点xx为无穷间断点。nx),3(sin)3(limnxxxnx,1sinlim21xxx求导法则基本公式导数xyx0lim微分xydy关系)(xodyydxydyydxdy高阶导数高阶微分主要内容导数与微分典型例题例1).0(),100()2)(1()(fxxxxxf求设解:!100或:设f(x)=xg(x),g(x)=(x-1)(x-2)(x-100),则f(x)=g(x)+xg(x),f(0)=g(0)+0=100!。00()(0)(0)limlim(1)(2)(100)0xxfxffxxxx例2解22224321111,arctanln,2411111()4112(1)1(1),21.(2)1uxxuuxyuuyuuuuxxxyxxx设则2221111arctan1ln,.2411xyxyx设求例3解:1sinlim)0()0(lim)0(00xxxfxffxx1)1ln(lim)0()0(lim)0(00xxxfxffxx.1)0(,1)0()0(fffsin,0(),ln(1),0(0),(0),(0).xxfxxxfff设问是否存在例4解:两边取对数,ln1ln1xyyx,lnlnxxyy即,1ln)ln1(xyy,ln11lnyxy2)ln1(1)1(ln)1(ln1yyyxyxy322)1(ln)1(ln)1(lnyxyxxyy22()(0,0),.yxyfxyxxydydx设函数由方程所确定求.,,arctan1ln222dxyddxdytytx导数数的求有参数方程所确定函设例5解ttttttdxdy1111)1(ln)(arctan222222221)1(ln)1()1(tttttdxddxyd.,)(sincosyxxyx求设例6解)(lnyyy)sinlncos(lnxxxy)sincossinlnsin1()(sin2cosxxxxxxxx.,114)(22nyxxy求设例7解:)1111(234xx,)1(!)1()11(1)(nnnxnx,)1(!)1()11(1)(nnnxnx].)1(1)1(1[!)1(2311)(nnnnxxny2222414433114()21111xxyxxxx洛必达法则Rolle定理Lagrange中值定理常用的泰勒公式型00,1,0型型0型00型Cauchy中值定理Taylor中值定理xxF)()()(bfaf0ngfgf1fgfggf1111取对数令gfy主要内容导数的应用(一)例1.)1(51lim520xxxx求极限解.2的次数为分子关于x515)51(51xx)()5()151(51!21)5(51122xoxx)(2122xoxx)1()](21[lim2220xxoxxxx原式.21典型例题.)21(lim)3(;)arctan2(lim)2(10ln1xxxxxxxnnxxxxeln)arctan2ln(lim)2(原式解xxxxe/111)arctan2(1lim2)arctan2(1lim2xxxxe22221111limxxxxe)(.12211limeexxx)(xxxxxnn10)21(lim)3()1ln(1lim0)3(nnxxxxe原式解])ln()1[ln()(1lim0nnxxxxexxxxxxnnne1ln2ln21ln111lim0nnnne!!ln22limaxaxaxax,0a;310)sin1tan1(limxxxxa21;21e..)2ln(2tanlim;lnsinlim;)(lnlim10xxxxxxxxxx0;0;2/.导数的应用(二)典型例题.)0(ln有几个实根方程aaxx例1()ln(0,);1(),1/.fxxaxxfxaxax解:设,驻点:x)/1,0(a),/1(aa/1)(xf)(xf0最大值.,1,01ln,0)1(;,10,01ln,0)1(;,1,01ln,0)1(原方程无根时原方程有两个根时原方程有唯一根时eaaafeaaafeaaaf例2.),0()11(上的单调性在判断xxyxxyyxxy11)11ln(),11ln(ln两边求导解:).1,(,0111]11ln)1[ln(xxxxxxyy则.),0()11(上单调增加在xxy单调递减则设或)(,0)(,11)11ln()(:xgxgxxxg例3)1(.0),1(ln/1成立等号仅在证明xxxnxn.23,23xxx时证明)1(1)(),1(ln)(:/1/1nnxxxfxnxxf设证.0)1(;0)(,1;0)(,1是最大值时时fxfxxfx.,0)1(ln)(/1命题成立nxnxxf例4).,0,0(,2ln)(lnlnyxyxyxyxyyxx证明不等式证),0(ln)(ttttf令,1ln)(ttf则,01)(ttf.0,0),,(),(ln)(是凹的或在yxxyyxtttf)2()]()([21yxfyfxf于是,2ln2]lnln[21yxyxyyxx即.2ln)(lnlnyxyxyyxx即例5.)(,;)(,:.0)(,0)()()(,1)(000)(0)1(000不是极值为奇数时是极值为偶数时证明且阶的导数的邻域内有直到在设xfnxfnxfxfxfxfnxxfnn100)1(200000))(()!1(1))((!21))(()()(nnxxxfnxxxfxxxfxfxf(在0x与x之间).,))((!1)()(0)(0nnxxfnxfxf证明.).()(,0)(,,0)(,0)(,)(00)(00)(0)()(是极值点则邻域时的某个位于当设且连续xxfxffxxxfxfxfnnnnnnxxnf)(!)(0)(.)(,0是拐点为奇数时当xfn,))(()!2(1)()(20)(0nnxxfnxfxf由.,0,0))(()!2(1,0)(,,0)(,0)(,)(0020)()(00)(0)()(xxxxxxfnfxxxfxfxfnnnnnn邻域时的某个位于当设且连续.,)(00是拐点改变符号经点函数xxxf例6.,,)1,2(sin2程两曲线的公共曲率圆方点处并写出向点具有相同的曲率和凹在使抛物线与正弦曲线一抛物线求作处上点过正弦曲线MMcbxaxyMxy解为曲率圆的圆心坐标分别曲率半径和处的曲率在点曲线,),()(yxxfy,])(1[232yyk,1kyyyyyyyxx2020)(1])(1[,sin)(xxfy对于曲线,1)2(f有)2(f.1,2cbxaxy对于曲线)2(f有,242cba)2(f,ba)2(f.2a若两曲线满足题设条件,必在该点处具有相同的一阶导数和二阶导数,于是有,1242cba,0ba.12a)2(f,0解此方程组得,21a,2b.812c故所求作抛物线的方程为.8122122xxy),0,2(,1曲率半径曲率圆的方程为.1)2(22yx两曲线在点处的曲率圆的圆心为例7.,,,,,12并作函数的图形渐近线拐点区间凹凸极值的单调区间求函数xxxy解:)1(定义域,1x),,1()1,1()1,(即1)(2xxxxf),(xf奇函数y)2(222)1(11xx,)1()3(2222xxx,0y令.3,0,3x得y222)1()3(2xxx,)1(1)1(133xx,0y令.0x得可能拐点的横坐标,lim)3(yx;没有水平渐近线,lim01yx又,lim01yx;1的铅直渐近线为曲线yx,lim01yx,lim01yx;1的铅直渐近线为曲线yxxyaxlim)1