【创新设计】2017版高考数学一轮复习 第二章 函数概念与基本初等函数1 第9讲 函数模型及其应用课

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第9讲函数模型及其应用考试要求1.指数函数、对数函数以及幂函数的增长特征,A级要求;2.函数模型(指数函数、对数函数、幂函数、分段函数等)的广泛应用,B级要求.知识梳理几类函数模型及其增长差异(1)几类函数模型函数模型函数解析式一次函数型f(x)=ax+b(a,b为常数,a≠0)反比例函数型f(x)=+b(k,b为常数且k≠0)二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)kx指数函数型f(x)=bax+c(a,b,c为常数,b≠0,a>0且a≠1)对数函数型f(x)=blogax+c(a,b,c为常数,b≠0,a>0且a≠1)幂函数型f(x)=axn+b(a,b为常数,a≠0)(2)指数、对数、幂函数模型性质比较函数性质y=ax(a>1)y=logax(a>1)y=xn(n>0)在(0,+∞)上的增减性单调单调单调递增增长速度越来越快越来越慢相对平稳图象的变化随x的增大逐渐表现为与平行随x的增大逐渐表现为与平行随n值变化而各有不同值的比较存在一个x0,当x>x0时,有logax<xn<ax递增递增y轴x轴诊断自测1.判断正误(在括号内打“√”或“×”)(1)函数y=2x的函数值比y=x2的函数值大.()(2)“指数爆炸”是指数型函数y=abx+c(a≠0,b>0,b≠1)增长速度越来越快的形象比喻.()(3)幂函数增长比直线增长更快.()(4)f(x)=x2,g(x)=2x,h(x)=log2x,当x∈(4,+∞)时,恒有h(x)<f(x)<g(x).()×××√2.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶,则下列图象与以上事件吻合得最好的是________(填序号).解析小明匀速运动时,所得图象为一条直线,且距离学校越来越近,排除①.因交通堵塞停留了一段时间,与学校的距离不变,排除④.后来为了赶时间加快速度行驶,排除②.故③符合.答案③3.(2015·南京、盐城模拟)用长度为24的材料围一矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为________.解析设隔墙的长为x(0<x<6),矩形面积为y,则y=x×24-4x2=2x(6-x)=-2(x-3)2+18,∴当x=3时,y最大.答案34.(2015·四川卷)某食品的保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=ekx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是________小时.解析由题意得eb=192,e22k+b=48,∴e22k=48192=14,∴e11k=12,∴x=33时,y=e33k+b=(e11k)3·eb=123·eb=18×192=24.答案245.(2014·北京卷改编)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足函数关系p=at2+bt+c(a,b,c是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为________分钟.解析根据图表,把(t,p)的三组数据(3,0.7),(4,0.8),(5,0.5)分别代入函数关系式,联立方程组得0.7=9a+3b+c,0.8=16a+4b+c,0.5=25a+5b+c,消去c化简得7a+b=0.1,9a+b=-0.3,解得a=-0.2,b=1.5,c=-2.0.所以p=-0.2t2+1.5t-2.0=-15t2-152t+22516+4516-2=-15t-1542+1316,所以当t=154=3.75时,p取得最大值,即最佳加工时间为3.75分钟.答案3.75考点一二次函数模型【例1】A,B两城相距100km,在两城之间距A城x(km)处建一核电站给A,B两城供电,为保证城市安全,核电站距城市距离不得小于10km.已知供电费用等于供电距离(km)的平方与供电量(亿度)之积的0.25倍,若A城供电量为每月20亿度,B城供电量为每月10亿度.(1)求x的取值范围;(2)把月供电总费用y表示成x的函数;(3)核电站建在距A城多远,才能使供电总费用y最少?解(1)x的取值范围为10≤x≤90.(2)y=5x2+52(100-x)2(10≤x≤90).(3)因为y=5x2+52(100-x)2=152x2-500x+25000=152x-10032+500003,所以当x=1003时,ymin=500003.故核电站建在距A城1003km处,能使供电总费用y最少.规律方法在建立二次函数模型解决实际问题中的最优问题时,一定要注意自变量的取值范围,需根据函数图象的对称轴与函数定义域之间的位置关系讨论求解.【训练1】(2014·武汉高三检测)某汽车销售公司在A,B两地销售同一种品牌的汽车,在A地的销售利润(单位:万元)为y1=4.1x-0.1x2,在B地的销售利润(单位:万元)为y2=2x,其中x为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是________万元.解析设公司在A地销售该品牌的汽车x辆,则在B地销售该品牌的汽车(16-x)辆,所以可得利润y=4.1x-0.1x2+2(16-x)=-0.1x2+2.1x+32=-0.1(x-212)2+0.1×2124+32.因为x∈[0,16]且x∈N,所以当x=10或11时,总利润取得最大值43万元.答案43考点二指数函数、对数函数模型【例2】世界人口在过去40年翻了一番,则每年人口平均增长率是________(参考数据lg2≈0.3010,100.0075≈1.017).解析设每年人口平均增长率为x,则(1+x)40=2,两边取以10为底的对数,则40lg(1+x)=lg2,所以lg(1+x)=lg240≈0.0075,所以100.0075=1+x,得1+x=1.017,所以x=1.7%.答案1.7%规律方法在实际问题中,有关人口增长、银行利率、细胞分裂等增长率问题常用指数函数模型表示.通常可以表示为y=N(1+p)x(其中N为基础数,p为增长率,x为时间)的形式.解题时,往往用到对数运算,要注意与已知表格中给定的值对应求解.【训练2】某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n次涨停(每次上涨10%),又经历了n次跌停(每次下跌10%),给出该股民关于这支股票的盈亏情况(不考虑其他费用):①略有盈利;②略有亏损;③没有盈利也没有亏损.其中说法正确的为________(填序号).解析设该股民购这支股票的价格为a元,则经历n次涨停后的价格为a(1+10%)n=a×1.1n元,经历n次跌停后的价格为a×1.1n×(1-10%)n=a×1.1n×0.9n=a×(1.1×0.9)n=0.99n·a<a,故该股民这支股票略有亏损.答案②考点三分段函数模型【例3】某旅游景点预计2017年1月份起前x个月的旅游人数的和p(x)(单位:万人)与x的关系近似地满足p(x)=12x(x+1)(39-2x)(x∈N*,且x≤12).已知第x个月的人均消费额q(x)(单位:元)与x的近似关系是q(x)=35-2x(x∈N*,且1≤x≤6),160x(x∈N*,且7≤x≤12).(1)写出2017年第x个月的旅游人数f(x)(单位:万人)与x的函数关系式;(2)试问2017年第几个月旅游消费总额最大?最大月旅游消费总额为多少元?解(1)当x=1时,f(1)=p(1)=37,当2≤x≤12,且x∈N*时,f(x)=p(x)-p(x-1)=12x(x+1)(39-2x)-12(x-1)x(41-2x)=-3x2+40x,验证x=1也满足此式,所以f(x)=-3x2+40x(x∈N*,且1≤x≤12).(2)第x个月旅游消费总额为g(x)=(-3x2+40x)(35-2x)(x∈N*,且1≤x≤6),(-3x2+40x)·160x(x∈N*,且7≤x≤12),即g(x)=6x3-185x2+1400x(x∈N*,且1≤x≤6),-480x+6400(x∈N*,且7≤x≤12).①当1≤x≤6,且x∈N*时,g′(x)=18x2-370x+1400,令g′(x)=0,解得x=5或x=1409(舍去).当1≤x<5时,g′(x)>0,当5<x≤6时,g′(x)<0,∴当x=5时,g(x)max=g(5)=3125(万元).②当7≤x≤12,且x∈N*时,g(x)=-480x+6400是减函数,∴当x=7时,g(x)max=g(7)=3040(万元).综上,2015年5月份的旅游消费总额最大,最大旅游消费总额为3125万元.规律方法(1)很多实际问题中,变量间的关系不能用一个关系式给出,这时就需要构建分段函数模型,如出租车的票价与路程的函数就是分段函数.(2)求函数最值常利用基本不等式法、导数法、函数的单调性等方法.在求分段函数的最值时,应先求每一段上的最值,然后比较得最大值、最小值.【训练3】某建材商场国庆期间搞促销活动,规定:顾客购物总金额不超过800元,不享受任何折扣,如果顾客购物总金额超过800元,则超过800元部分享受一定的折扣优惠,按下表折扣分别累计计算.可以享受折扣优惠金额折扣率不超过500元的部分5%超过500元的部分10%某人在此商场购物总金额为x元,可以获得的折扣金额为y元,则y关于x的解析式为y=0,0<x≤800,5%(x-800),800<x≤1300,10%(x-1300)+25,x>1300.若y=30元,则他购物实际所付金额为________元.解析若x=1300元,则y=5%(1300-800)=25(元)<30(元),因此x>1300.∴由10%(x-1300)+25=30,得x=1350(元).答案1350[思想方法]解函数应用问题的步骤(四步八字)(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)解模:求解数学模型,得出数学结论;(4)还原:将数学结论还原为实际问题的意义.以上过程用框图表示如下:[易错防范]1.解应用题思路的关键是审题,不仅要明白、理解问题讲的是什么,还要特别注意一些关键的字眼(如“几年后”与“第几年后”),学生常常由于读题不谨慎而漏读和错读,导致题目不会做或函数解析式写错,故建议复习时务必养成良好的审题习惯.2.在解应用题建模后一定要注意定义域,建模的关键是注意寻找量与量之间的相互依赖关系.3.解决完数学模型后,注意转化为实际问题写出总结答案.

1 / 25
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功