1第一章1.列举几种临床常用的全身静脉麻醉药静脉麻醉药又称为非吸入麻醉药,大多为水溶性的盐类。药物通过静脉注射进入血液,随血液循环进入中枢神经产生作用。麻醉作用迅速,不良反应少,为主要的全麻药。但麻醉的深浅程度较难控制。临床常用的静脉麻醉药有:(1)早期:巴比妥类:硫喷妥钠(ThiopentalSodium)海索比妥钠(Hexobarbitalsodium)优点:作用快缺点:安全范围窄(2)近年:非巴比妥类:盐酸氯胺酮(KetaminiHydrochloridum)化学名:为2-(2-氯苯基)-2-甲胺基环己酮盐酸盐。依托咪酯(Etomidate)羟丁酸钠(SodiumHydroxybutyrate)2.为什么说lidocaine的化学性质比procaine稳定利多卡因的局麻作用强与普鲁卡因两倍,且穿透力强。其比普鲁卡因稳定是由于分子结构中有酰胺键,由于邻位两个甲基的空间位阻作用,对酸、碱均较稳定,不易被水解。3.按化学结构分类,局麻药分为哪几类?各有哪些主要代表药物?局麻药的主要结构类型及代表药物类型结构药名生物碱可卡因脂类普鲁卡因2酰胺类利多卡因酮类达克罗宁醚类普拉莫卡因氨基甲酸酯类庚卡因4.简述局麻药的构效关系。局麻药的结构可分为三个部分:I为亲脂性部分,可为芳烃或芳杂环,而以苯环作用最强。苯环邻对位上引入给电子基团例如氨基等可使活性增强。苯环邻位上引入取代基可增加位阻,延长作用时间。苯环氨基上引入烷基可增强活性。II为中间连接部分,此部分决定药物的稳定性。X可为O、NH、CH2、S等n=2、3时局麻作用好,有支链局麻作用强。麻醉作用强度:麻醉作用持续时间:III为亲水性部分,通常为仲胺或叔胺。好的局麻药,分子的亲脂性与亲水性间应有适当的平衡,即应有一定的脂水分配系数。一般来说,具有较高的脂溶性,较低的pKa值的局麻药通常具有较快的麻醉作用和较低的毒性。35.试写出lidocaine/procaine的合成路线。普鲁卡因的合成:利多卡因合成路线:第二章6.试述苯二氮䓬类药物的基本结构特征、化学稳定性和构效关系。苯二氮䓬的基本结构:化学名:1,3-二氢-5-苯基-2H-1,4-苯并二氮䓬-2-酮苯二氮䓬的化学稳定性:在苯二氮䓬环1,2位上并合三唑环,增加了对代谢的稳定性,并可提高其与受体的亲和力。生物活性明显增加。如艾司唑伦(Estazolam)、阿普唑伦(Alprazolam)、三唑伦(Triazolam)等。苯二氮䓬的构效关系:(1)结构中七元亚胺内酰胺环是产生药效的必要结构。(2)1,3-二氢-5-苯基-2H-1,4-苯并二氮䓬-2-酮是此类药物的基本结构。(3)7位(R4)及5位苯环的2′位(R3)引入吸电子基团可使活性增强。(NO2CF3BrCl)4(4)1位N上(R1)引入甲基可增强活性。3位(R2)的一个氢原子可被羟基取代,虽然活性稍有下降,但毒性降低。(5)1,2位的酰胺键和4,5位的亚胺键,在酸性条件下容易水解开环,这是该类药物不稳定作用时间短的原因。在1,2位或4,5位并入杂环,生物活性增强。7.通过巴比妥类药物的基本结构通式分析其理化通性及其构效关系。基本结构:巴比妥类药物为丙二酰脲(巴比妥酸,BarbituricAcid)的衍生物。理化通性:巴比妥酸无活性,当5位上的两个氢原子被烃基取代时才呈现活性。巴比妥类药物由于分子内存在酮式-烯醇式互变而呈酸性,是为数不多的典型的酸性药物。构效关系:巴比妥类药物属于非特异性结构类型药物,其作用强弱、快慢、作用时间长短主要取决于药物的理化性质,与药物的酸性解离常数(pKa)、油水分配系数(lgP)及代谢失活过程有关。5-位取代基结构是影响巴比妥类药物作用时间的主要因素之一。(1)酸性解离度对药效的影响药物以分子的形式通过生物膜,以离子的形式发挥药理作用。因此药物应有适宜的解离度。巴比妥酸和5-单取代衍生物,其5位上的活泼H酸性强,在生理pH7.4条件下,几乎全部解离,不易透过血脑屏障到达中枢,因此无活性。5,5-双取代巴比妥类药物酸性较弱,在生理pH条件下,未解离的分子约占50%或更多,易透过血脑屏障到达中枢,因此有活性。(2)脂水分配系数对药效的影响:C5上的修饰:巴比妥酸5位上的两个氢原子被烃基取代,使分子的亲脂性增加:碳原子总数为4时出现镇静催眠作用,7~8作用最强。一般控制在在4~9之间。N1上的修饰:在N1上引入甲基,可降低酸性和增加脂溶性,起效快,失效也快,作用时间短。如海索比妥pKa为8.4,在生理pH条件下,约90%未解离。O用S代替:将C2的O以S代替,脂溶性大,生效快,但失效也快,作用时间短,例如硫喷妥钠为超短时类。5(3)代谢对作用时间的影响:5位取代基为直链烷烃或芳烃时,体内不易被氧化代谢,作用时间长。如为支链烷烃或不饱和烃时,体内易被氧化代谢,作用时间短。8.服用氯丙嗪后为什么要减少户外活动?这是因为氯丙嗪结构中具有吩噻嗪环,易被氧化。服用了氯丙嗪的人在日光强烈照射下会发生严重的光毒化过敏反应(为分解产生的自由基与蛋白质发生过敏反应)。9.写出苯巴比妥的合成方法。合成路线:因芳卤烃不活泼,苯巴比妥的合成是以苯乙酸乙酯为原料,在醇钠催化下与草酸二乙酯缩合后,加热脱羰,制得2-苯基丙二酸二乙酯,再进行乙基化,最后与脲缩合而得。10.按化学结构分类具有抗精神失常作用的药物有哪些结构类型。抗精神病药按化学结构分类主要有:三环类吩噻嗪类噻吨类、二苯骈二氮䓬类丁酰苯类苯酰胺类第三章11.简述解热镇痛抗炎药的作用机理。由于前列腺素是一类主要的炎症介质,所以热镇痛抗炎药通过抑制花生四烯酸环氧化酶(Cyclo-oxygenase,COX)阻断前列腺素的生物合成发挥消炎、解热、镇痛作用。12.阿司匹林中可能含有什么杂质?说明杂质来源及检查方法。由于合成阿司匹林时乙酰化反应不完全,或在阿司匹林贮存时保管不当,成品中含有过多的水杨酸杂质,不仅对人体有毒性,且易被氧化生成一系列醌型有色物质。检验方法:加入三氯化铁,水杨酸与三氯化铁反应,呈紫堇色。13.阿司匹林长期服用有时会引起胃肠道出血,为什么?阿司匹林及水杨酸由于游离羧基的存在,易产生胃肠道刺激的副作用,同时阿司匹林是环氧化酶1不可逆的抑制剂,抑制了胃粘膜内前列腺素PGl2的生物合成,易造成胃溃疡甚至胃出血。因此对水杨酸及阿司匹林进行一系列结构修饰,通过成盐、成酰胺或成酯,6开发了许多副作用较小的水杨酸类衍生物。14.为什么临床上使用的布洛芬为外消旋体,如何用缩水甘油法合成布洛芬?布洛芬以消旋体给药,但其药效成分中其实只是(S)-(+)-异丁苯丙酸(即右旋布洛芬)才具有明显活性,而无效的(R)-(-)-异构体通常在消化道吸收的过程中经酶的作用可转化为(S)-(+)-异构体,使得药物在消化道滞留的时间更长,(S)-(+)-布洛芬在血浆中的浓度更高其原因除代谢转化外,还与(R)-(-)-异构体具有较高的立体选择性和肾清除率有关。正因为此,加上合成具有特殊光学选择性的化合物成本较高,因此目前在临床上使用的均为外消旋体商品。合成布洛芬:第四章15.根据吗啡的结构和化学性质,请说明盐酸吗啡在保存过程中应注意哪些问题?会产生哪些杂质?(1)由于3位酚羟基的存在,使吗啡及其盐的水溶液不稳定,放置过程中,受光催化易被空气中的氧氧化变色,生成毒性大的双吗啡(Dimorphine)或称伪吗啡(Pseudomorphine),氧化反应机理为自由基反应。吗啡的稳定性受pH和温度影响,pH4最稳定,中性和碱性条件下极易被氧化。应避光保存。(2)吗啡在酸性水溶液中加热,经分子重排生成的阿扑吗啡(Apomorphine)。具有催吐作用。阿扑吗啡具有邻二酚结构,更易被氧化,在碱性条件下被碘氧化后,有水和醚存在时,水层呈绿色,醚层呈红色,中国药典用此反应对盐酸吗啡中的杂质阿扑吗啡作限量检查。16.吗啡结构修饰中改变17位氮原子上的取代基对活性有何影响?将吗啡17位氮原子上的甲基以苯乙基取代得苯乙基吗啡,镇痛效力增强。——激动17位氮原子的甲基以3~5个碳的取代基取代,如烯丙吗啡,7镇痛效力减弱,是阿片受体的部分激动剂。羟吗啡酮的衍生物纳洛酮、纳曲酮则是阿片受体的拮抗剂,用于吗啡中毒解救剂。——拮抗(1)激动剂是能激活受体的配体,对相应的受体有较强的亲和力和内在活性。(2)部分激动剂对相应的受体有较强的亲和力,但内在活性不强。(混合激动-拮抗剂)(3)拮抗剂能阻断受体活性的配体,有较强的亲和力而无内在活性。17.请以氮芥和苄氰为原料,合成盐酸哌替啶?盐酸哌替啶合成:18.吗啡类镇痛药与合成镇痛药在结构上有哪些共性?大多数镇痛药结构中都可以找出与吗啡结构有着共性的部分:即都存在吗啡结构中的A环和E环。第六章19.举出几种临床常用的解痉药。用于临床的解痉药分为:颠茄生物碱类和合成的解痉药。从茄科植物颠茄、莨菪等分离出的颠茄生物碱(莨菪生物碱)用于临床的有阿托品(Atropine,(±)-莨菪碱)、(-)-东莨菪碱((-)-Scopolamine)、山莨菪碱(Anisodamine))和樟柳碱(Anisodine)。合成解痉药分为半合成解痉药和全合成解痉药。1.半合成解痉药如溴甲阿托品(胃疡平),甲溴东莨菪碱,丁溴东莨菪碱等药物胃肠道平滑肌解痉作用增8强,用作解痉药,治疗胃肠道痉挛、胆绞痛等。2.全合成解痉药20.分析阿托品、东莨菪碱、山莨菪碱和樟柳碱的结构,说明在稀酸和稀碱性条件子稳定性的差异和中枢作用的强弱。上述生物碱的化学结构相似,均为氨基醇酯类化合物,差异仅在于分子结构中6,7位间氧桥的存在,使分子的亲脂性增强,易透过血脑屏障,增强中枢作用。而6位或莨菪酸位羟基的存在,使分子的亲水性增强,中枢作用减弱。因此中枢作用:东莨菪碱>阿托品>樟柳碱>山莨菪碱。稳定性:(1)阿托品化学结构为氨基醇酯类,在碱性条件下易被水解生成莨菪醇和消旋莨菪酸,其水溶液在弱酸性,近中性较稳定,pH3.5~4.0最稳定。(2)与稀酸或稀碱加热时被水解,先生成的莨菪品(东莨菪醇),由于6,7位间的三元氧环不稳定,经异构化反应转变为莨菪灵(异东莨菪醇)。21.简述解痉药的构效关系。M受体拮抗剂的基本结构:(Ⅰ)氨基部位通常为季铵或叔胺结构,季铵活性较大,中枢副作用较小。在生理pH条件下,氮上均带有正电荷,可与M受体的负离子部位结合,对形成药物受体复合物起重要作用。氮上取代基通常为甲基、乙基、丙基或异丙基,也可以形成杂环。(Ⅱ)中间碳链长度n一般在2~4个碳原子之间,以n=2为最好,延长碳链则活性下降或消失。(Ⅲ)多数抗胆碱药结构中的x为酯键COO,但酯基并不是抗胆碱活性所必需,且易水解代谢失活。应用电子等排原理,以醚键、烷基代替酯键,疏水性增大,中枢作用增强,用于治疗帕金森病,如苯海索。(Ⅳ)R1和R2为碳环或杂环,当两个环不同时常常活性更好。在体内与M受体上的疏水区通过范德华力或疏水作用结合,阻碍乙酰胆碱与受体接近和结合而起到抗M胆碱的作用。但环状基团太大,则活性消失,可能是由于立体位阻效应妨碍了药物和受体的结合。R3可以是H、0H、CH20H或CONH2。当R3为0H或CH20H时,可与M受体形成氢键,结合力增强,因此抗胆碱作用增强,所以多数M受体拮抗剂的R3含0H。总之,M胆碱受体拮抗剂的结构具有以下共同特点:①分子的一端为正离子基团,与受体的负离子部位结合;②分子的另一端为较大的环状基团,该基团可通过范德华力或疏水力和受体结合,阻断乙酰胆碱与受体的结合;③这两端由一定长度的结构单元(如酯基)相连接;④分子中存在羟基可以增强药物和受体的结合力。第七章922.试解释为什么麻黄碱较肾上腺素的作用弱,但作用维持时间较肾上腺素长?肾上腺素药物结构如下:若苯环上有羟基取代,作用增强,以儿茶酚结构激动作用最强,但因易代谢失活,故作用维持时间较短。若苯环上无羟基取代,作用减弱,但不易代谢失活,作用持续时间较长。如麻黄碱的作用强度是肾上腺素的1/100,但作用时间是肾上腺素的7倍。23.说明儿茶酚胺类药物在制备、储存和应用过程中应注意什么问题?儿茶酚胺类