《幂的乘方》ppt课件

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

14.1.2幂的乘方人教版八年级数学上册执教人:李宏伟活动1知识回顾口述同底数幂的乘法法则am·an=am+n(m、n都是正整数).同底数幂相乘,底数不变,指数相加.539926aa53)()(xx33)(xx432xxxaaaa432898a8x6x9x52a(1);(3);(5);(6).(2);(4);1.计算:2.下面的计算对不对?如果不对应该怎样改正?⑴⑵⑷⑶⑸;2333xxx;633xxx;2633xxx;933xxx;33aaa3.计算:32yxyxyx6yx;)(22232aaaaa;3333)3(22232⑴⑵⑶aaaaammmm3)((m是正整数).3.根据乘方的意义及同底数幂的乘法填空,看看计算的结果有什么规律:表示什么?表示什么?表示什么?332323maa2..;3;523249a1.试一试:读出式子663m活动2manmmmnmaaaa个)(mnmmma个?)(nma对于任意底数a与任意正整数m,n,mna(乘方的意义)(同底数幂的乘法法则)(乘法的定义)mnnmaa)((m,n都是正整数).幂的乘方,底数,指数.不变相乘幂的乘方的运算公式你能用语言叙述这个结论吗?公式中的a可表示一个数、字母、式子等.例2:计算:(1)(103)5;(2)(a4)4;(3)(am)2;(4)-(x4)3.解:(1)(103)5=103Χ5=1015;(2)(a4)4=a4Χ4=a16;(3)(am)2=amΧ2=a2m;(4)-(x4)3=-x4Χ3=-x12.活动3计算:(1)(103)3;(2)(x3)2;(3)-(xm)5;(4)(a2)3∙a5;⑸23)(y⑹43])[(ba运算种类公式法则中运算计算结果底数指数同底数幂乘法幂的乘方乘法乘方不变不变指数相加指数相乘mnnmaa)(nmnmaaa活动4下列各式对吗?请说出你的观点和理由:(1)(a4)3=a7()(2)a4a3=a12()(3)(a2)3+(a3)2=(a6)2()(4)(-x3)2=(-x2)3()××××活动51.下列各式中,与x5m+1相等的是()(A)(x5)m+1(B)(xm+1)5(C)x·(x5)m(D)x·x5·xmc2.x14不可以写成()(A)x5·(x3)3(B)(-x)·(-x2)·(-x3)·(-x8)(C)(x7)7(D)x3·x4·x5·x2C活动6幂的乘方的逆运算:(1)x13·x7=x()=()5=()4=()10;(2)a2m=()2=()m(m为正整数).20x4x5x2ama2mnnmmnaaa)()(幂的乘方法则的逆用活动7已知,44•83=2x,求x的值.9822172334234)2()2(84解:17x所以活动81.已知3×9n=37,求:n的值.2.已知a3n=5,b2n=3,求:a6nb4n的值.3.设n为正整数,且x2n=2,求9(x3n)2的值.4.已知2m=a,32n=b,求:23m+10n.课堂小结1.幂的乘方的法则nmnmaa)((m、n都是正整数)幂的乘方,底数不变,指数相乘.语言叙述符号叙述.2.幂的乘方的法则可以逆用.即nmmnaa)(mna)(3.多重乘方也具有这一性质.如pnmpnmaa])[((其中m、n、p都是正整数).公式中的a可表示一个数、字母、式子等.作业P148习题15.1第1题(3)(4)附加题计算:2342)()1(aaa.2423)())(2(xx.(3)把42])[(yx化成nyx)(的形式.

1 / 16
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功