2018菏泽数学中考真题(解析版)学校:________班级:________姓名:________学号:________一、单选题(共8小题)1.下列各数:﹣2,0,,0.020020002…,π,,其中无理数的个数是()A.4B.3C.2D.12.习近平主席在2018年新年贺词中指出,“安得广厦千万间,大庇天下寒士俱欢颜!”2017年,340万贫困人口实现异地扶贫搬迁,有了温暖的新家,各类棚户区改造开工提前完成600万套目标任务.将340万用科学记数法表示为()A.0.34×107B.34×105C.3.4×105D.3.4×1063.如图,直线a∥b,等腰直角三角板的两个顶点分别落在直线a、b上,若∠1=30°,则∠2的度数是()A.45°B.30°C.15°D.10°4.如图是两个等直径圆柱构成的“T”形管道,其左视图是()A.B.C.D.5.关于x的一元二次方程(k+1)x2﹣2x+1=0有两个实数根,则k的取值范围是()A.k≥0B.k≤0C.k<0且k≠﹣1D.k≤0且k≠﹣16.如图,在⊙O中,OC⊥AB,∠ADC=32°,则∠OBA的度数是()A.64°B.58°C.32°D.26°7.规定:在平面直角坐标系中,如果点P的坐标为(m,n),向量可以用点P的坐标表示为:=(m,n).已知:=(x1,y1),=(x2,y2),如果x1•x2+y1•y2=0,那么与互相垂直.下列四组向量,互相垂直的是()A.=(3,2),=(﹣2,3)B.=(﹣1,1),=(+1,1)C.=(3,20180),=(﹣,﹣1)D.=(,﹣),=(()2,4)8.已知二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+a与反比例函数y=在同一平面直角坐标系中的图象大致是()A.B.C.D.二、填空题(共6小题)9.不等式组的最小整数解是.10.若a+b=2,ab=﹣3,则代数式a3b+2a2b2+ab3的值为﹣.11.若正多边形的每一个内角为135°,则这个正多边形的边数是.12.据资料表明:中国已成为全球机器人第二大专利来源国和目标国.机器人几大关键技术领域包括:谐波减速器、RV减速器、电焊钳、3D视觉控制、焊缝跟踪、涂装轨迹规划等,其中涂装轨迹规划的来源国结构(仅计算了中、日、德、美)如图所示,在该扇形统计图中,美国所对应的扇形圆心角是度.13.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为3:4,∠OCD=90°,∠AOB=60°,若点B的坐标是(6,0),则点C的坐标是.14.一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是.三、解答题(共10小题)15.计算:﹣12018+()﹣2﹣|﹣2|﹣2sin60°.16.先化简,再求值:(﹣y)÷﹣(x﹣2y)(x+y),其中x=﹣1,y=2.17.如图,AB∥CD,AB=CD,CE=BF.请写出DF与AE的数量关系,并证明你的结论.18.2018年4月12日,菏泽国际牡丹花会拉开帷幕,菏泽电视台用直升机航拍技术全程直播.如图,在直升机的镜头下,观测曹州牡丹园A处的俯角为30°,B处的俯角为45°,如果此时直升机镜头C处的高度CD为200米,点A、B、D在同一条直线上,则A、B两点间的距离为多少米?(结果保留根号)19.列方程(组)解应用题:为顺利通过国家义务教育均衡发展验收,我市某中学配备了两个多媒体教室,购买了笔记本电脑和台式电脑共120台,购买笔记本电脑用了7.2万元,购买台式电脑用了24万元,已知笔记本电脑单价是台式电脑单价的1.5倍,那么笔记本电脑和台式电脑的单价各是多少?20.如图,已知点D在反比例函数y=的图象上,过点D作DB⊥y轴,垂足为B(0,3),直线y=kx+b经过点A(5,0),与y轴交于点C,且BD=OC,OC:OA=2:5.(1)求反比例函数y=和一次函数y=kx+b的表达式;(2)直接写出关于x的不等式>kx+b的解集.21.为了发展学生的核心素养,培养学生的综合能力,某中学利用“阳光大课间”,组织学生积极参加丰富多彩的课外活动,学校成立了舞蹈队、足球队、篮球队、毽子队、射击队等,其中射击队在某次训练中,甲、乙两名队员各射击10发子弹,成绩用如图的折线统计图表示:(甲为实线,乙为虚线)(1)依据折线统计图,得到下面的表格:射击次序(次)12345678910甲的成绩(环)8979867a108乙的成绩(环)679791087b10其中a=,b=;(2)甲成绩的众数是环,乙成绩的中位数是环;(3)请运用方差的知识,判断甲、乙两人谁的成绩更为稳定?(4)该校射击队要参加市组织的射击比赛,已预选出2名男同学和2名女同学,现要从这4名同学中任意选取2名同学参加比赛,请用列表或画树状图法,求出恰好选到1男1女的概率.22.如图,△ABC内接于⊙O,AB=AC,∠BAC=36°,过点A作AD∥BC,与∠ABC的平分线交于点D,BD与AC交于点E,与⊙O交于点F.(1)求∠DAF的度数;(2)求证:AE2=EF•ED;(3)求证:AD是⊙O的切线.23.问题情境:在综合与实践课上,老师让同学们以“矩形纸片的剪拼”为主题开展数学活动.如图1,将:矩形纸片ABCD沿对角线AC剪开,得到△ABC和△ACD.并且量得AB=2cm,AC=4cm.操作发现:(1)将图1中的△ACD以点A为旋转中心,按逆时针方向旋转∠α,使∠α=∠BAC,得到如图2所示的△AC′D,过点C作AC′的平行线,与DC'的延长线交于点E,则四边形ACEC′的形状是.(2)创新小组将图1中的△ACD以点A为旋转中心,按逆时针方向旋转,使B、A、D三点在同一条直线上,得到如图3所示的△AC′D,连接CC',取CC′的中点F,连接AF并延长至点G,使FG=AF,连接CG、C′G,得到四边形ACGC′,发现它是正方形,请你证明这个结论.实践探究:(3)缜密小组在创新小组发现结论的基础上,进行如下操作:将△ABC沿着BD方向平移,使点B与点A重合,此时A点平移至A'点,A'C与BC′相交于点H,如图4所示,连接CC′,试求tan∠C′CH的值.24.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣5交y轴于点A,交x轴于点B(﹣5,0)和点C(1,0),过点A作AD∥x轴交抛物线于点D.(1)求此抛物线的表达式;(2)点E是抛物线上一点,且点E关于x轴的对称点在直线AD上,求△EAD的面积;(3)若点P是直线AB下方的抛物线上一动点,当点P运动到某一位置时,△ABP的面积最大,求出此时点P的坐标和△ABP的最大面积.2018菏泽数学中考真题(解析版)参考答案一、单选题(共8小题)1.【分析】依据无理数的三种常见类型进行判断即可.【解答】解:在﹣2,0,,0.020020002…,π,中,无理数有0.020020002…,π这2个数,故选:C.【知识点】算术平方根、无理数2.【分析】根据科学记数法的表示方法可以将题目中的数据用科学记数法表示,本题得以解决.【解答】解:340万=3400000=3.4×106,故选:D.【知识点】科学记数法—表示较大的数3.【分析】根据a∥b,得到∠1+∠3+∠4+∠2=180°,将∠1=30°,∠3=45°,∠4=90°代入即可求出∠2的度数.【解答】解:如图.∵a∥b,∴∠1+∠3+∠4+∠2=180°,∵∠1=30°,∠3=45°,∠4=90°,∴∠2=15°,故选:C.【知识点】等腰直角三角形、平行线的性质4.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看如图,故选:B.【知识点】简单组合体的三视图5.【分析】根据一元二次方程的定义和判别式的意义得到k+1≠0且△=(﹣2)2﹣4(k+1)≥0,然后求出两个不等式的公共部分即可.【解答】解:根据题意得k+1≠0且△=(﹣2)2﹣4(k+1)≥0,解得k≤0且k≠﹣1.故选:D.【知识点】根的判别式、一元二次方程的定义6.【分析】根据垂径定理,可得=,∠OEB=90°,根据圆周角定理,可得∠3,根据直角三角形的性质,可得答案.【解答】解:连接AO,如图:由OC⊥AB,得=,∠OEB=90°.∴∠2=∠3.∵∠2=2∠1=2×32°=64°.∴∠3=64°,在Rt△OBE中,∠OEB=90°,∴∠B=90°﹣∠3=90°﹣64°=26°,故选:D.【知识点】全等三角形的判定与性质、圆周角定理7.【分析】根据垂直的向量满足的条件判断即可;【解答】解:A、∵3×(﹣2)+2×3=0,∴与垂直,故本选项符合题意;B、∵(﹣1)(+1)+1×1=2≠0,∴与不垂直,故本选项不符合题意;C、∵3×(﹣)+1×(﹣1)=﹣2≠0,∴与不垂直,故本选项不符合题意;D、∵×()2+(﹣)×4=2≠0,∴与不垂直,故本选项不符合题意,故选:A.【知识点】*平面向量、立方根、零指数幂8.【分析】直接利用二次函数图象经过的象限得出a,b,c的取值范围,进而利用一次函数与反比例函数的性质得出答案.【解答】解:∵二次函数y=ax2+bx+c的图象开口向上,∴a>0,∵该抛物线对称轴位于y轴的右侧,∴a、b异号,即b<0.∵当x=1时,y<0,∴a+b+c<0.∴一次函数y=bx+a的图象经过第一、二、四象限,反比例函数y=的图象分布在第二、四象限,故选:B.【知识点】二次函数的图象、反比例函数的图象、一次函数的图象二、填空题(共6小题)9.【分析】首先分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集,从而得出答案.【解答】解:解不等式x+1>0,得:x>﹣1,解不等式1﹣x≥0,得:x≤2,则不等式组的解集为﹣1<x≤2,所以不等式组的最小整数解为0,故答案为:0.【知识点】一元一次不等式组的整数解10.【分析】根据a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,结合已知数据即可求出代数式a3b+2a2b2+ab3的值.【解答】解:∵a+b=2,ab=﹣3,∴a3b+2a2b2+ab3=ab(a2+2ab+b2),=ab(a+b)2,=﹣3×4,=﹣12.故答案为:﹣12.【知识点】因式分解的应用11.【分析】先求出每一外角的度数是45°,然后用多边形的外角和为360°÷45°进行计算即可得解.【解答】解:∵所有内角都是135°,∴每一个外角的度数是180°﹣135°=45°,∵多边形的外角和为360°,∴360°÷45°=8,即这个多边形是八边形.故答案为:8.【知识点】多边形内角与外角12.【分析】根据圆心角=360°×百分比,计算即可;【解答】解:美国所对应的扇形圆心角=360°×(1﹣21%﹣32%﹣31%)=57.6°,故答案为57.6.【知识点】扇形统计图13.【分析】根据题意得出D点坐标,再解直角三角形进而得出答案.【解答】解:分别过A、C作AE⊥OB,CF⊥OB,∵∠OCD=90°,∠AOB=60°,∴∠ABO=∠CDO=30°,∠OCF=30°,∵△OAB与△OCD是以点O为位似中心的位似图形,相似比为3:4,点B的坐标是(6,0),∴D(8,0),则DO=8,故OC=4,则FO=2,CF=CO•cos30°=4×=2,故点C的坐标是:(2,2).故答案为:(2,2).【知识点】位似变换、坐标与图形性质14.【分析】根据输出的结果确定出x的所有可能值即可.【解答】解:当3x﹣2=127时,x=43,当3x﹣2=43时,x=15,当3x﹣2=15时,x=,不是整数;所以输入的最小正整数为15,故答案为:15.【知识点】代数式求值三、解答题(共10小题)15.【分析】直接利用特殊角的三角函数值、绝对值的性质、负指数幂的性质进行化简得出答案.【解答】解:原式=﹣1+4﹣(2﹣)﹣2×=﹣1+4﹣2+﹣=1.【知识点】负整数指数幂、特殊角的三角函数值、实数的运算16.【分析】原式利用分式的混合运算顺序和运算法则化简,再将x、y的值代入计算可得.【解答】解:原