第6讲 层次分析法的基本原理

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第六讲层次分析法的基本原理基础教研部:夏冰一、问题的提出例1购物买钢笔,一般要依据质量、颜色、实用性、价格、外形等方面的因素选择某一支钢笔。买饭,则要依据色、香、味、价格等方面的因素选择某种饭菜。决策是指在面临多种方案时需要依据一定的标准选择某一种方案。层次分析法的基本原理例2旅游假期旅游,是去风光秀丽的苏州,还是去迷人的北戴河,或者是去山水甲天下的桂林,一般会依据景色、费用、食宿条件、旅途等因素选择去哪个地方。例3择业面临毕业,可能有高校、科研单位、企业等单位可以去选择,一般依据工作环境、工资待遇、发展前途、住房条件等因素择业。例4科研课题的选择由于经费等因素,有时不能同时开展几个课题,一般依据课题的可行性、应用价值、理论价值、被培养人才等因素进行选题。面临各种各样的方案,要进行比较、判断、评价、最后作出决策。这个过程主观因素占有相当的比重给用数学方法解决问题带来不便。T.L.saaty等人在20世纪七十年代提出了一种能有效处理这类问题的实用方法。层次分析法简介层次分析法是萨蒂(saaty)等人20世纪70年代提出的一种决策方法。它是将半定性、半定量问题转化为定量问题的有效途径,它将各种因素层次化,并逐层比较多种关联因素,为分析和预测事物的发展提供可的定量依据。层次分析法在决策工作中有广泛的应用。主要用于确定综合评价的权重系数。层次分析法所用数学工具主要是矩阵运算。一、层次分析法的基本思路与人们对某一复杂决策问题的思维、判断过程大体一致。选择钢笔质量、颜色、价格、外形、实用钢笔1、钢笔2、钢笔3、钢笔4质量、颜色、价格、外形、实用进行排序将各个钢笔的质量、颜色、价格、外形、实用进行排序经综合分析决定买哪支钢笔二、层次分析法的基本步骤买钢笔质量颜色价格外形实用可供选择的笔一般分为三层,最上面为目标层,最下面为方案层,中间是准则层(指标层)。准则层方案层目标层1、建立层次结构模型选择旅游地景色费用居住饮食旅途苏州、杭州、桂林例2层次结构模型准则层A方案层B目标层Z若上层的每个因素都支配着下一层的所有因素,或被下一层所有因素影响,称为完全层次结构,否则称为不完全层次结构。设某层有个因素,nnxxxX,,,21ijaij1ijjiaa其中nnnnnnnnijaaaaaaaaaaA212222111211A2、构造成对比较矩阵比较它们对上一层某一准则(或目标)的影响程度,确定在该层中相对于某一准则所占的比重。(即把n个因素对上层某一目标的影响程度排序)用表示第个因素相对于第个因素的比较结果,则则称为成对比较矩阵。上述比较是两两因素之间进行的比较,比较时取1~9尺度。13579尺度第个因素与第个因素的影响相同ij第个因素比第个因素的影响稍强第个因素比第个因素的影响强第个因素比第个因素的影响明显强第个因素比第个因素的影响绝对地强iiiijjjj含义比较尺度:(1~9尺度的含义)2,4,6,8表示第个因素相对于第个因素的影响介于上述两个相邻等级之间。不难定义以上各尺度倒数的含义,根据。jijiijaa1成对比较矩阵nnijaA10ija)12ijjiaa)满足以下性质31iia)则称为正互反阵。例2(旅游问题)第二层A的各因素对目标层Z的影响两两比较结果如下:ZA1A2A3A4A5A1A2A3A4A511/2433217551/41/711/21/31/31/52111/31/531154321,,,,AAAAA分别表示景色、费用、居住、饮食、旅途。由上表,可得成对比较矩阵1135131112513131211714155712334211A旅游问题的成对比较矩阵共有6个(一个5阶,5个3阶)。问题:两两进行比较后,如何判断下层各因素对上层某因素的影响程度的排序结果呢?3、层次单排序及一致性检验n层次单排序:确定下层各因素对上层某因素影响程度的过程。用权值表示影响程度,先从一个简单的例子看如何确定权值。例如一块石头重量记为1,打碎分成n个小,各块的重量分别记为:则可得成对比较矩阵11121212121由右面矩阵可以看出,jkkiji即,nji,,2,1,1321231321234,2,7aaaaaaAijkjikaaaijkjikaaaAnjiaaaiijiij,,2,1,,1,1.1也是一致阵TA.21.3ArankA的各行成比例,则但在例2的成对比较矩阵中,在正互反矩阵中,若,则称为一致阵。一致阵的性质:4.max,10Aλnn-的最大特征根(值)其余特征根均等于。5.A的任一列(行)都是对应于特征根n的特征向量。若成对比较矩阵是一致阵,则我们自然会取对应于最大特征根的归一化特征向量,且定理:阶互反阵的最大特征根,当且仅当时,为一致阵。Ann11niiwiwinnnA表示下层第个因素对上层某因素影响程度的权值。若成对比较矩阵不是一致阵,Saaty等人建议用其最大特征根对应的归一化特征向量作为权向量,则Anw这样确定权向量的方法称为特征根法.1nCIn由于连续的依赖于,则比大得越多,的不一致性越严重。用最大特征值对应的特征向量作为被比较因素对上层某因素影响程度的权向量,其不一致程度越大,引起的判断误差越大。因而可以用数值的大小来衡量nijanAA的不一致程度。定义一致性指标其中为的对角线元素之和,也为的特征根之和。AnARI50021,,,AAA50021,,,CICICI15005005002150021nnCICICIRI则可得一致性指标定义随机一致性指标随机构造500个成对比较矩阵随机一致性指标RI数值表n1234567891011RI000.580.901.121.241.321.411.451.491.510.1CICRRIAA一致性检验:利用一致性指标和一致性比率0.1及随机一致性指标的数值表,对进行检验的过程。一般,当一致性比率的不一致程度在容许范围之内,可用其归一化特征向量作为权向量,否则要重新构造成对比较矩阵,对加以调整。时,认为A确定某层所有因素对于总目标相对重要性的排序权值过程,称为层次总排序从最高层到最低层逐层进行。设:Z1A2AmA1B2BnB,,,,21mAAAmA个因素层对总目标Z的排序为maaa,,,21jAAnB中因素为个因素对上层层的层次单排序为),,2,1(,,,21mjbbbnjjj4、层次总排序及其一致性检验即层第个因素对总目标的权值为:BnmmnnnmmmmbababaBbababaBbababaB22112222211211221111:::Bimjijjba1层的层次总排序为:B层的层次总排序mAAA,,,21maaa,,,21nBBB2112111nbbb22212nbbbnmmmbbb21AB111bbamjjj212bbamjjjnmjnjjbba1层次总排序的一致性检验设层对上层(层)中因素的层次单排序一致性指标为,随机一致性指为,则层次总排序的一致性比率为:BnBBB,,,21A),,2,1(mjAjjCIjRImmmmRIaRIaRIaCIaCIaCIaCR221122110.1CR当时,认为层次总排序通过一致性检验。到此,根据最下层(决策层)的层次总排序做出最后决策。1.建立层次结构模型该结构图包括目标层,准则层,方案层。层次分析法的基本步骤归纳如下3.计算单排序权向量并做一致性检验2.构造成对比较矩阵从第二层开始用成对比较矩阵和1~9尺度。对每个成对比较矩阵计算最大特征值及其对应的特征向量,利用一致性指标、随机一致性指标和一致性比率做一致性检验。若检验通过,特征向量(归一化后)即为权向量;若不通过,需要重新构造成对比较矩阵。计算最下层对最上层总排序的权向量。4.计算总排序权向量并做一致性检验1.0CRCR进行检验,若通过,则可按照总排序权向量表示的结果进行决策,否则需要重新考虑模型或重新构造那些一致性比率较大的成对比较矩阵。mmmmRIaRIaRIaCIaCIaCIaCR22112211利用总排序一致性比率数统治着宇宙。——毕达哥拉斯

1 / 25
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功