学习必备欢迎下载第1页2019中考数学专题练习-一元二次方程的实际应用(含解析)一、单选题1.一件产品原来每件的成本是100元,在市场售价不变的情况下,由于连续两次降低成本,现在利润每件增加了19元,则平均每次降低成本的()A.8.5%B.9%C.9.5%D.10%2.在一次排球联赛中,每两个代表队之间都要进行一场比赛,共要比赛28场,共有多少个代表队参加比赛?设有x个代表队参加比赛,则可列方程()A.x(x﹣1)=28B.(x﹣1)2=28C.x(x+1)=28D.x(x﹣1)=283.某农家前年水蜜桃的亩产量为800千克,今年的亩产量为1200千克.假设从前年到今年水蜜桃亩产量的年平均增长率都为x,则可列方程()A.800(1+2x)=1200B.800(1+x2)=1200C.800(1+x)2=1200D.800(1+x)=12004.现有一张面积是240cm2的长方形纸片,且它的长比宽多8cm,可设长方形纸片的宽为x,则根据题意可列得一元二次方程为()A.x(x+8)=240B.x(x﹣8)=240C.x(x﹣8)=120D.x(x+8)=1205.某商品的进价为每件40元,当售价为每件60元时,每星期可卖出300件;现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.现在要使利润为6125元,设每件商品应降价x元,则可列方程为()A.(20+x)(300+20x)学习必备欢迎下载第2页=6125B.(20﹣x)(300﹣20x)=6125C.(20﹣x)(300+20x)=6125D.(20+x)(300﹣20x)=61256.某型号的手机连续两次降价,每个售价由原来的1185元降到了580元,设平均每次降价的百分率为x,列出方程正确的是()A.580(1+x)2=1185B.1185(1+x)2=580C.580(1-x)2=1185D.1185(1-x)2=5807.某商品原价为180元,连续两次提价x%后售价为300元,下列所列方程正确的是()A.180(1+x%)=300B.180(1+x%)2=300C.180(1-x%)=300D.180(1-x%)2=3008.已知一个直角三角形的面积为10,两直角边长的和为9,则两直角边长分别为()A.3,6B.2,7C.1,8D.4,59.学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册.设这两年的平均增长率为x,则下列方程正确的是()A.5(1+x)=7.2B.5(1+2x)=7.5C.5(1+x)2=7.2D.5(1+x)+5(1+x)2=7.2二、填空题10.劲威牌衬衣的价格经过连续两次降价后,由每件150元降至96元,求平均每次降价的百分率是多少,可列方程________.11.受某种因素影响,在一个月内猪肉价格两次大幅下降,由原来每斤16元下调到每斤9元,求平均每次下调的百分率是多少?设平均每次下调的百分率为x,则根据题意可列方程为________学习必备欢迎下载第3页12.把方程x(x+1)=2化成一般形式是________13.某磷肥厂今年一月份的磷肥产量为4万吨,若二月份的产量平均增长率为x,则二月份的产量为________.若三月份产量的平均增长率为x,则三月份产量为________.14.某药店响应国家政策,某品牌药连续两次降价,由开始每盒16元下降到每盒14元.设每次降价的平均百分率是x,则列出关于x的方程是________.15.某商店四月份的利润为6.3万元,此后两个月进入淡季,利润均以相同的百分比下降,至六月份利润为5.4万元.设下降的百分比为x,由题意列出方程________.16.某种品牌的手机经过十一、十二月份连续两次降价,每部售价由3200元降到了2500元.设平均每月降价的百分率为x,根据题意列出的方程是________.17.某工程生产一种产品,第一季度共生产了364个,其中1月份生产了100个,若2、3月份的平均月增长率为x,则可列方程为________18.要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,计划安排28场比赛.求参加邀请赛的球队数.若设共有x个球队参加此次邀请赛,则根据题意可列方程为________.19.如果两个连续奇数的积是323,求这两个数,如果设其中一个奇数为x,你能列出求解x的方程吗?________.三、解答题20.新兴商场经营某种儿童益智玩具.已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.每件玩具的售价定为多少元时,月销售利润恰为2520元?21.大正方形的周长比小正方形的周长长96厘米,它们的面积相差960平方厘米.求这两个正方形的边长.22.如图,某农场要建一个长方形的养鸡场,鸡场的一边靠墙,墙长25m,另外三边用木栏围着,木栏长40m.(1)若养鸡场面积为200,求鸡场靠墙的一边长;(2)养鸡场面积能达到250吗?如果能,请给出设计方案,如果不能,请说明理由.四、综合题23.某商品的进价为每件20元,售价为每件25元时,每天可卖出250件.市场调查反映:如果调整价格,一件商品每涨价1元,每天要少卖出10件.学习必备欢迎下载第4页(1)求出每天所得的销售利润w(元)与每件涨价x(元)之间的函数关系式;并写出自变量的取值范围(2)商场的营销部在调控价格方面,提出了A,B两种营销方案.方案A:每件商品涨价不超过11元;方案B:每件商品的利润至少为16元.请比较哪种方案的最大利润更高,并说明理由.24.某经销商销售一种产品,这种产品的成本价为10元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克,且10≤x≤18)之间的函数关系如图所示;(1)求y(千克)与销售价x的函数关系式;(2)该经销商想要获得150元的销售利润,销售价应定为多少?25.在国家的宏观调控下,某市的商品房成交价由今年3月分的5000元/m2下降到5月分的4050元/m2(1)问4、5两月平均每月降价的百分率是多少?(2)如果房价继续回落,按此降价的百分率,你预测到7月分该市的商品房成交均价是否会跌破3000元/m2?请说明理由.答案解析部分一、单选题1.【答案】D【考点】一元二次方程的应用【解析】【解答】解:设平均每次降低成本x,根据题意得100﹣100(1﹣x)2=19,即(1﹣x)2=0.81,解得x1=0.1,x2=1.9(舍去),所以平均每次降低成本10%.故选:D.【分析】本题可设平均每次降低成本x,因为原来每件成本为100元,由于两次降低成本,该产品在售价不变的情况下,每件利润增加19元,所以有100﹣100(1﹣x)2=19,解这个方程即可求解.2.【答案】D【考点】一元二次方程的应用学习必备欢迎下载第5页【解析】【解答】解:设有x个代表队参加比赛,则可列方程x(x﹣1)=28.故选D.【分析】设有x个队参赛,根据参加一次排球联赛的每两队之间都进行一场比赛,共要比赛28场,可列出方程.3.【答案】C【考点】一元二次方程的应用【解析】【解答】设从前年到今年水蜜桃亩产量的年平均增长率都为x,则去年水蜜桃的亩产量为800×(1+x)千克,今年水蜜桃的亩产量在去年水蜜桃的亩产量的基础上增加x,为:800×(1+x)×(1+x)千克,由题意得:800(1+x)2=1200.故选C.【分析】可先表示出去年水蜜桃的亩产量,那么去年水蜜桃的亩产量×(1+增长率)=1200,把相应数值代入即可求解.4.【答案】A【考点】一元二次方程的应用【解析】【解答】设长方形纸片的宽为x,则长为(x+8),根据题意得:x(x+8)=240,故选A.【分析】根据矩形的宽表示出矩形的长,利用矩形的面积计算方法列出方程即可.5.【答案】C【考点】一元二次方程的应用【解析】【解答】解:设应降价x元,根据题意得:(300+20x)(20﹣x)=6125,故选:C.【分析】设应降价x元,根据每降价1元,每星期可多卖出20件,利用销量×每件利润=6125元列出方程即可.6.【答案】D【考点】一元二次方程的应用【解析】【分析】根据降价后的价格=原价(1-降低的百分率),本题可先用x表示第一次降价后商品的售价,再根据题意表示第二次降价后的售价,即可列出方程.【解答】设平均每次降价的百分率为x,由题意得出方程为:1185(1-x)2=580.故选:D.【点评】本题考查一元二次方程的应用,解决此类两次变化问题,可利用公式a(1+x)2=c,其中a是变化前的原始量,c是两次变化后的量,x表示平均每次的增长率7.【答案】B【考点】一元二次方程的应用学习必备欢迎下载第6页【解析】【解答】当商品第一次提价x%时,其售价为180+180x%=180(1+x%),当商品第二次提价x%后,其售价为180(1+x%)+180(1+x%)x%=180(1+x%)2.∴180(1+x%)2=300.故答案为:B.【分析】先表示第一次提价后商品的售价,再表示第二次提价后的售价,得到关于x%的方程.8.【答案】D【考点】一元二次方程的应用【解析】【解答】设直角三角形的一条直角边为x,则另一条直角边为(9﹣x),x(9﹣x)=10,整理得:x2﹣9x+20=0,解得:x1=4,x2=5,9﹣x=5或4.答:两直角边长分别为5,4.故选:D.【分析】设直角三角形的一条直角边为x,则另一条直角边为(9﹣x),根据三角形的面积列出方程解答即可.9.【答案】C【考点】一元二次方程的应用【解析】【解答】设这两年的平均增长率为x,由题意得,5(1+x)2=7.2.故选C.【分析】设这两年的平均增长率为x,则去年年底的图书数量×(1+x)2=明年年底的图书数量,据此列方程.二、填空题10.【答案】150×(1-x)2=96【考点】一元二次方程的应用【解析】【解答】设平均每次降价的百分率为x,则可以得到关系式:150×(1-x)2=96【分析】如果价格每次降价的百分率为x,降一次后就是降到价格的(1-x)倍,连降两次就是降到原来的(1-x)2倍.则两次降价后的价格是150×(1-x)2,即可列方程求解11.【答案】16(1﹣x)2=9【考点】一元二次方程的应用【解析】【解答】解:第一次降价后的价格为16(1﹣x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为16(1﹣x)(1﹣x),则列出的方程是16(1﹣x)2=9,故答案为:16(1﹣x)2=9.【分析】可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣降低的百分率)=9,把相应数值代入即可求解.12.【答案】x2+x﹣2=0【考点】一元二次方程的应用学习必备欢迎下载第7页【解析】【解答】解:x(x+1)=2,去括号得:x2+x=2,移项得:x2+x﹣2=0,故答案为:x2+x﹣2=0.【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),首先把方程左边的两式相乘,再移项使方程右边变为0,然后合并同类项即可.13.【答案】4(1+x);4(1+x)2【考点】一元二次方程的应用【解析】【解答】解:如果若二月份的产量平均增长率为x,则二月份的产量为4(1+x),如果三月份产量的平均增长率为x,那么三月份产量为4(1+x)2.故填空答案:4(1+x),4(1+x)2【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果若二月份的产量平均增长率为x,则二月份的产量为4(1+x),如果三月份产量的平均增长率为x,那么三月份产量为4(1+x)214.【答案】16(1﹣x)2=14【考点】一元二次方程的应用【解析】【解答】设该药品平均每次降价的百分率是x,根据题意得16×(1-x)(1-x)=14,整理得:16(1-x)2=14.故答案为:16(1-x)2=14.【分析】考查了由实际问题抽象出一元二次方程,本题需注意第二次降价后的价格是在第一次降价后的价格的基础上进行降价的.找到关键描述语,找到等量关系准确的列出方程是