楞次定律--感应电流方向的判定G_++_G_++_用试触的方法确定电流方向与电流计指针偏转方向的关系结论:电流从电流计的正接线柱流入,指针向正向偏转,电流从电流计的负接线柱流入,指针向负向偏转GNSGSNGSNGNS感应电流方向(俯视)逆时针顺时针顺时针逆时针穿过回路磁通量的变化增大减小增大减小原磁场方向向下向下向上向上感应电流磁场方向向上向下向下向上思考:感应电流方向有什么规律?结论1:当线圈内原磁通量增加时,感应电流的磁场B'的方向与原磁场B0的方向相反→感应电流的磁场阻碍磁通量的增加结论2:当线圈内原磁通量减少时,感应电流的磁场B'的方向与原磁场B0的方向相同→感应电流的磁场阻碍磁通量的减少阻碍磁通量的变化阻碍磁通量的变化实验结论⑴当线圈中的磁通量增大时,B与B0的方向相反;⑵当线圈中的磁通量减小时,B与B0的方向相同。即:增“反”减“同”一、楞次定律感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化1、内容:2、对“阻碍”的理解:明确原磁场与感应电流的磁场间的因果关系谁起阻碍作用?阻碍什么?阻碍是阻止吗?“阻碍”就是感应电流的磁场总与原磁场的方向相反吗?感应电流产生的磁场引起感应电流的磁通量的变化“增反减同”否,只是使磁通量的变化变慢不一定!从另一个角度认识楞次定律在下面四个图中标出线圈上的N、S极GNSGSNGSNGNSNSNNNSSS移近时斥力阻碍相互靠近移去时引力阻碍相互远离感应电流的效果总是阻碍导体和引起感应电流的磁体间的相对运动楞次定律表述二:“来拒去留”楞次(1804~1865)俄国物理学家。1804年2月24日生于德尔帕特(今爱沙尼亚共和国的塔都)。1820年入德尔帕特大学;在大学二年级时由校长推荐参加1823~1826年“企业号”单桅炮舰的全球考察旅行;他设计了海水测深仪等仪器并卓越地完成了海上物理考察,1834年起当选为科学院院士;1836~1865年任彼得堡大学教授,1840年任数理系主任,1863年任校长。其间还在海军和师范学院任教。1865年2月10日在罗马逝世。楞次从青年时代就开始研究电磁感应现象。1831年法拉第发现了电磁感应现象后,当时已有许多便于记忆的“左手定则”、“右手定则”、“右手螺旋法则”等经验性规则,但是并没有给出确定感生电流方向的一般法则。1833年楞次在总结了安培的电动力学与法拉第的电磁感应现象后,发现了确定感生电流方向的定律——楞次定律。这一结果于1834年在《物理学和化学年鉴》上发表。楞次定律说明电磁现象也遵循能量守恒定律。2.适用范围:各种电磁感应现象3.对楞次定律的理解:回路磁通量的变化感应电流(磁场)产生阻碍总而言之,理解“阻碍”含义时要明确:①谁起阻碍作用——感应磁场②阻碍的是什么——原磁场的磁通量变化③怎样阻碍——“增反减同”,来“拒”去“留”④阻碍的结果怎样——减缓原磁场的磁通量的变化3.对楞次定律的进一步理解:回路磁通量的变化感应电流(磁场)产生阻碍①从磁通量的变化的角度:增“反”减“同”②从相对运动的角度:阻碍相对运动即:来“拒”去“留”例:GNS磁铁插入或拔出线圈的过程中,怎样判断感应电流的方向?GSN•结论:磁铁插入或拔出线圈时,感应电流的磁场总是要阻碍磁铁与线圈的相对运动。NSNSGNSVI如右图所示,试运用楞次定律判定感应电流的方向。4.用楞次定律判定感应电流的方向的方法:(4)用安培定则判定感应电流的方向。(1)先确定原磁场方向。(增大或减小)(增反减同)(3)确定感应电流产生的磁场方向。(2)确定磁通量的变化趋势。二、楞次定律的应用【例1-1】如图所示,当线框向右移动,请判断线框中感应电流的方向解题思路:原磁场B0的方向:向外原磁场B0的变化情况:变小感应磁场B‘的方向:向外感应电流的方向:A→D→C→B楞次定律I安培定则磁铁从线圈中插入时,标出感应电流的方向。磁铁从螺线管右端拔出时,A、B两点哪点电势高?NSBANS解法二步骤:先用来“拒”去“留”判断线圈产生的磁极,再用右手螺旋定则确定感应电流的方向。N磁铁从线圈中插入时,标出感应电流的方向。磁铁从螺线管右端拔出时,A、B两点哪点电势高?NSN+−NSSNBA(3)下图中弹簧线圈面积增大时,判断感应电流的方向是顺时针还是逆时针。应用楞次定律解决问题IBB(4)下图中k接通时乙回路有感应电流产生吗?方向如何?Gk甲乙abcdIGkabcdI【巩固练习1】如图所示,让闭合线圈由位置1通过一个匀强磁场运动到位置2。线圈在运动过程中,什么时候没有感应电流?为什么?什么时候有感应电流?方向如何?pGpGNSI【巩固练习2】下图中滑动变阻器滑片p左移时,标出电流计回路中感应电流的方向。NNⅠⅡⅢ5、一水平放置的矩形闭合线圈abcd,在细长磁铁的N极附近竖直下落,由图示位置Ⅰ经过位置Ⅱ到位置Ⅲ,位置Ⅰ和位置Ⅲ都很靠近位置Ⅱ.在这个过程中,线圈中感应电流:()A.沿abcd流动B.沿dcba流动C.从Ⅰ到Ⅱ是沿abcd流动,从Ⅱ到Ⅲ是沿dcba流动D.从Ⅰ到Ⅱ是沿dcba流动,从Ⅱ到Ⅲ是沿abcd流动ⅠⅡⅢabcd●●●A(二)右手定则1.判定方法:伸开右手,让大拇指跟其余四指垂直,并且都跟手掌在同一平面内,让磁感线从手心垂直进入,大拇指指向导体运动的方向,其余四指所指的方向就是感应电流的方向。2.适用范围:适用于闭合电路一部分导线切割磁感线产生感应电流的情况。(三)楞次定律与右手定则的比较1、楞次定律可适用于由磁通量变化引起感应电流的各种情况,而右手定则只适用于一部分导体在磁场中做切割磁感线运动的情况,导线不动时不能应用,因此右手定则可以看作楞次定律的特殊情况。2、在判断由导体切割磁感线产生的感应电流时右手定则与楞次定律是等效的,而右手定则比楞次定律更方便。(5)如图,金属棒ab在匀强磁场中沿金属框架向右匀速运动,用右手定则和楞次定律两种方法判定ab导体中感应电流的方向。vbadc小结判断感应电流的方向:楞次定律是普遍适用的导体切割磁感线时用右手定则方便磁铁和线圈作相对运动时用“来拒去留”方便2、固定的长直导线中电流突然增大时,附近的导线框abcd整体受什么方向的力作用?1、一闭合的铜环放在水平桌面上,磁铁向下运动时,环的面积如何变化?③思考题MNdcbaI•楞次定律的两个推论:(1)闭合电路面积的增、减总是要阻碍原磁通量的变化。(2)闭合电路的移动(或转动)方向总是要阻碍原磁通量的变化。(一般情况下,同一闭合电路会同时存在上述两种变化)2.楞次定律第二种表述应用例2.如图2—1所示,光滑固定导体轨M、N水平放置,两根导体棒P、Q平行放于导轨上,形成一个闭合路,当一条形磁铁从高处下落接近回路时()A.P、Q将互相靠拢B.P、Q相互相远离C.磁铁的加速度仍为gD.磁铁的加速度小于gMNPQN变式1、如图所示,当条形磁铁突然向闭合铜环运动时,铜环里产生的感应电流的方向怎样?铜环运动情况怎样?原磁场方向穿过回路磁通量的变化感应电流磁场方向感应电流方向向左增加向右前后顺时针铜环向右运动研究对象:铜环变式2、如图,在水平光滑的两根金属导轨上放置两根导体棒AB、CD,当条形磁铁插入与拔出时导体棒如何运动?(不考虑导体棒间的磁场力)ABCD插入时:AB、CD相向运动拔出时:AB、CD相互远离3.电势高低的判定例3.图3—1为地磁场磁感线的示意图,在北半球地磁场竖直分量向下。飞机在我国上空匀速巡航,机翼保持水平,飞机高度不变。由于地磁场的作用,金属机翼上有电势差,设飞行员左方机翼末端处的电势为,右方机翼末端处的电势为()A.若飞机从西往东飞,U1比高U2B.若飞机从东往西飞,U2比高C.若飞机从南往北飞,比U2高D.若飞机从北往南飞,U2比高SN1U1U1U1U2UAC例4.如图4—1所示,A、B两个线圈绕在同一个闭合铁芯上,它们的两端分别与电阻可以不计的光滑、水平、平行导轨P、Q和M、N相连;P、Q处在竖直向下的匀强磁场中,M、N处在竖直向下匀强磁场中;直导线ab横放在P、Q上,直导线cd横放在M、N上,cd原来不动,下列说法正确的有()A.若ab向右匀速滑动,则cd也向右滑动B.若ab向右加速滑动,则cd也向右滑动C.若ab向右减速滑动,则cd也右滑动D.若ab向右减速滑动,则cd也左滑动××××××××××××××××××××××B2B1MNcdPQabAABB