第二章核酸的结构和功能StructureandFunctionofNucleicAcid核酸(nucleicacid)是以核苷酸为基本组成单位的生物大分子,携带和传递遗传信息。一、核酸的发现和研究工作进展1868年FridrichMiescher从脓细胞中提取“核素”1944年Avery等人证实DNA是遗传物质S35P321953年Watson和Crick发现DNA的双螺旋结构1968年Nirenberg发现遗传密码1975年Temin和Baltimore发现逆转录酶1981年Gilbert和Sanger建立DNA测序方法1985年Mullis发明PCR技术1990年美国启动人类基因组计划(HGP)1994年中国人类基因组计划启动2001年美、英等国完成人类基因组计划基本框架类病毒(viroid):有传染性因子。环状RNA。可遗传的基因组。二、核酸的分类及分布90%以上分布于细胞核,其余分布于核外如线粒体,叶绿体,质粒等。分布于胞核、胞液。(deoxyribonucleicacid,DNA)(ribonucleicacid,RNA)脱氧核糖核酸核糖核酸携带遗传信息,决定细胞和个体的基因型(genotype)。参与细胞内DNA遗传信息的表达。某些病毒RNA也可作为遗传信息的载体。第一节核酸的化学组成及其一级结构TheChemicalComponentandPrimaryStructureofNucleicAcid核酸的化学组成1.元素组成C、H、O、N、P(9~10%)2.分子组成——碱基(base):嘌呤碱,嘧啶碱——戊糖(ribose):核糖,脱氧核糖——磷酸(phosphate)嘌呤(purine)NNNHN123456789NNNHNNH2腺嘌呤(adenine,A)NNHNHNNH2O鸟嘌呤(guanine,G)碱基NNH132456嘧啶(pyrimidine)胞嘧啶(cytosine,C)NNHNH2O尿嘧啶(uracil,U)NHNHOO胸腺嘧啶(thymine,T)NHNHOOCH3戊糖(构成RNA)1´2´3´4´5´OHOCH2OHOHOH核糖(ribose)(构成DNA)OHOCH2OHOH脱氧核糖(deoxyribose)核苷:AR,GR,UR,CR脱氧核苷:dAR,dGR,dTR,dCR一、核苷酸的结构1.核苷(ribonucleoside)的形成碱基和核糖(脱氧核糖)通过糖苷键连接形成核苷(脱氧核苷)。OHOCH2OHOHNNNH2O1´1POOOHOHOCH2OHOHNNNH2OOHOCH2OHOHNNNH2O核苷酸:AMP,GMP,UMP,CMP脱氧核苷酸:dAMP,dGMP,dTMP,dCMP2.核苷酸(ribonucleotide)的结构与命名核苷(脱氧核苷)和磷酸以磷酸酯键连接形成核苷酸(脱氧核苷酸)。体内重要的游离核苷酸及其衍生物含核苷酸的生物活性物质:NAD+、NADP+、CoA-SH、FAD等都含有AMP多磷酸核苷酸:NMP,NDP,NTP环化核苷酸:cAMP,cGMPNADP+NAD+5´端3´端3.核苷酸的连接核苷酸之间以磷酸二酯键连接形成多核苷酸链,即核酸。CGA二、核酸的一级结构定义核酸中核苷酸的排列顺序。由于核苷酸间的差异主要是碱基不同,所以也称为碱基序列。5′端3′端CGAAGP5PTPGPCPTPOH3书写方法5pApCpTpGpCpT-OH35ACTGCT3第二节DNA的空间结构与功能DimensionalStructureandFunctionofDNADNA的二级结构-双螺旋结构–DNA双螺旋结构的研究背景和历史意义–DNA双螺旋结构模型要点DNA的超螺旋结构及其在染色质中的组装–DNA的超螺旋结构–原核生物DNA的高级结构–DNA在真核生物细胞核内的组装DNA的功能一、DNA的二级结构——双螺旋结构(一)DNA双螺旋结构的研究背景碱基组成分析Chargaff规则:[A]=[T][G][C]碱基的理化数据分析A-T、G-C以氢键配对较合理DNA纤维的X-线衍射图谱分析(二)DNA双螺旋结构模型要点(Watson,Crick,1953)DNA分子由两条相互平行但走向相反的脱氧多核苷酸链组成,两链以-脱氧核糖-磷酸-为骨架,以右手螺旋方式绕同一公共轴盘。螺旋直径为2nm,形成大沟(majorgroove)及小沟(minorgroove)相间。(二)DNA双螺旋结构模型要点(Watson,Crick,1953)碱基垂直螺旋轴居双螺旋内側,与对側碱基形成氢键配对(互补配对形式:A=T;GC)。相邻碱基平面距离0.34nm,螺旋一圈螺距3.4nm,一圈10对碱基。碱基互补配对TAGC(二)DNA双螺旋结构模型要点(Watson,Crick,1953)氢键维持双链横向稳定性,碱基堆积力维持双链纵向稳定性。(三)DNA双螺旋结构的多样性发夹结构hiarpin:二重对称区,通过自身回折使得互补的碱基对相遇,形成氢键结合而成的,称为发夹结构。回文序列Palindromicsequence,反向重复序列:有对称轴;是自我互补的序列;两条链从5'到3'方向的序列一致;是II类限制酶的识别序列;是某些蛋白的识别序列;是基因的旁侧序列5'GGTACC3'3'CCATGG5'二、DNA的超螺旋结构及其在染色质中的组装(一)DNA的超螺旋结构超螺旋结构(superhelix或supercoil)DNA双螺旋链再盘绕即形成超螺旋结构。正超螺旋(positivesupercoil)盘绕方向与DNA双螺旋方同相同负超螺旋(negativesupercoil)盘绕方向与DNA双螺旋方向相反意义DNA超螺旋结构整体或局部的拓扑学变化及其调控对于DNA复制和RNA转录过程具有关键作用。(二)原核生物DNA的高级结构(三)DNA在真核生物细胞核内的组装真核生物染色体由DNA和蛋白质构成,其基本单位是核小体(nucleosome)。核小体的组成DNA:约200bp(histone)组蛋白:H1H2A,H2BH3H4常染色质:euchromatin,是指间期核内染色质纤维折叠压缩程度低,处于伸展状态,用碱性染料染色时着色浅的那些染色质。构成常染色质的DNA主要是单一序列DNA和中度重复序列DNA,处于常染色质状态只是基因转录的必要条件,而不是充分条件。异染色质:某些染色体或染色体的某些部分的固缩常较其他的染色质早些或晚些,其染色较深或较浅,具有这种固缩特性的染色体称为异染色质(heterochromatin)。具有强嗜碱性,染色深,染色质丝包装折叠紧密,与常染色质相比,异染色质是转录不活跃部分三、DNA的功能DNA的基本功能是以基因的形式荷载遗传信息,并作为基因复制和转录的模板。它是生命遗传的物质基础,也是个体生命活动的信息基础。基因从结构上定义,是指DNA分子中的特定区段,其中的核苷酸排列顺序决定了基因的功能。第三节RNA的结构与功能StructureandFunctionofRNARNA的种类、分布、功能核蛋白体RNA信使RNA转运RNA核内不均一RNA核内小RNA胞浆小RNA细胞核和胞液线粒体功能rRNAmRNAmtrRNAtRNAmtmRNAmttRNAHnRNASnRNASnoRNAscRNA/7SL-RNA核蛋白体组分蛋白质合成模板转运氨基酸成熟mRNA的前体参与hnRNA的剪接、转运rRNA的加工、修饰蛋白质内质网定位合成的信号识别体的组分核仁小RNA核蛋白体RNA信使RNA转运RNA核内不均一RNA核内小RNA胞浆小RNA细胞核和胞液线粒体功能rRNAmRNAmtrRNAtRNAmtmRNAmttRNAHnRNASnRNASnoRNAscRNA/7SL-RNA核蛋白体组分蛋白质合成模板转运氨基酸成熟mRNA的前体参与hnRNA的剪接、转运rRNA的加工、修饰蛋白质内质网定位合成的信号识别体的组分核仁小RNA核酶:核酶(ribozyme)是具有催化功能的RNA分子,是生物催化剂,可降解特异的mRNA序列。一、信使RNA的结构与功能hnRNA内含子(intron)mRNA*mRNA成熟过程外显子(exon)信使RNA是由DNA的一条链作为模板转录而来的、携带遗传信息的能指导蛋白质合成的一类单链核糖核酸。单顺反子:单顺反子(monocistron):真核生物基因转录产物为单顺反子,即一条mRNA模板只含有一个翻译起始点和一个终止点。多顺反子:原核生物意指一个mRNA分子编码多个多肽链。这些多肽链对应的DNA片段则位于同一转录单位内,享用同一对起点和终点。*mRNA结构特点1.大多数真核mRNA的5´末端均在转录后加上一个7-甲基鸟苷,同时第一个核苷酸的C´2也是甲基化,形成帽子结构:m7GpppNm-。2.大多数真核mRNA的3´末端有一个多聚腺苷酸(polyA)结构,称为多聚A尾。帽子结构mRNA核内向胞质的转位mRNA的稳定性维系翻译起始的调控帽子结构和多聚A尾的功能*mRNA的功能把DNA所携带的遗传信息,按碱基互补配对原则,抄录并传送至核糖体,用以决定其合成蛋白质的氨基酸排列顺序。DNAmRNA蛋白转录翻译原核细胞细胞质细胞核DNA内含子外显子转录转录后剪接转运mRNAhnRNA翻译蛋白真核细胞*tRNA的一级结构特点含10~20%稀有碱基,如DHU74-95个核苷酸3´末端为—CCA-OH三叶草或L立体结构。二、转运RNA的结构与功能NNHNHNNOCH3CH3NNNHNNHCH2CHCCH3CH3NHNHOOHHHHNHNHSON,N二甲基鸟嘌呤N6-异戊烯腺嘌呤双氢尿嘧啶4-巯尿嘧啶稀有碱基*tRNA的二级结构——三叶草形氨基酸臂DHU环反密码环额外环TΨC环氨基酸臂额外环*tRNA的三级结构——倒L形*tRNA的功能活化、搬运氨基酸到核糖体,参与蛋白质的翻译。*rRNA的结构三、核蛋白体RNA的结构与功能*rRNA的功能参与组成核蛋白体,作为蛋白质生物合成的场所。•rRNA的种类(根据沉降系数)•数量细胞内多达80%真核生物5SrRNA28SrRNA5.8SrRNA18SrRNA原核生物5SrRNA23SrRNA16SrRNA核蛋白体的组成原核生物(以大肠杆菌为例)真核生物(以小鼠肝为例)小亚基30S40SrRNA16S1542个核苷酸18S1874个核苷酸蛋白质21种占总重量的40%33种占总重量的50%大亚基50S60SrRNA23S5S2940个核苷酸120个核苷酸28S5.85S5S4718个核苷酸160个核苷酸120个核苷酸蛋白质31种占总重量的30%49种占总重量的35%四、其他小分子RNA及RNA组学除了上述三种RNA外,细胞的不同部位存在的许多其他种类的小分子RNA,统称为非mRNA小RNA(smallnon-messengerRNAs,snmRNAs)。snmRNAssnmRNAs的种类核内小RNAsnRNAs核仁小RNAsnoRNAsrRNA的加工microRNA非编码mRNAsnmRNAs的功能参与hnRNA和rRNA的加工和转运。RNA组学研究细胞中snmRNAs的种类、结构和功能。同一生物体内不同种类的细胞、同一细胞在不同时间、不同状态下snmRNAs的表达具有时间和空间特异性。RNA组学核酸的理化性质ThePhysicalandChemicalCharactersofNucleicAcid第四节1.DNA或RNA的定量OD260=1.0相当于50μg/ml双链DNA40μg/ml单链DNA(或RNA)20μg/ml寡核苷酸2.判断核酸样品的纯度DNA纯品:OD260/OD280=1.8RNA纯品:OD260/OD280=2.0一、OD260的应用二、DNA的变性(denaturation)定义:在某些理化因素作用下,DNA双链解开成两条单链的过程。方法:过量酸,碱,加热,变性试剂如尿素、酰胺以及某些有机溶剂如乙醇、丙酮等。变性后其它理化性质变