集合知识点总结

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第一章集合与函数概念课时一:集合有关概念1.集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。2.一般的研究对象统称为元素,一些元素组成的总体叫集合,简称为集。3.集合的中元素的三个特性:(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。例:世界上最高的山、中国古代四大美女、(优秀的,漂亮的,聪明的,难的,简单的,都不可以构成集合)(2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合例:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。1)列举法:将集合中的元素一一列举出来{a,b,c……}2)描述法:将集合中元素的公共属性描述出来,写在大括号内表示集合。{xR|x-32},{x|x-32}①语言描述法:例:{不是直角三角形的三角形}②Venn图:画出一条封闭的曲线,曲线里面表示集合。4、集合的分类:(1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合例:{x|x2=-5}5、元素与集合的关系:(1)元素在集合里,则元素属于集合,即:aA(2)元素不在集合里,则元素不属于集合,即:aA非负整数集(即自然数集)记作:N正整数集N*或N+整数集Z有理数集Q实数集R课时二、集合间的基本关系1.“包含”关系—子集(1)定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集。记作:BA(或BA)注意:BA有两种可能(1)A是B的一部分,(2)A与B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.真子集:如果AB,且AB那就说集合A是集合B的真子集,记作AB(或BA)或若集合AB,存在xB且xA,则称集合A是集合B的真子集。3.“相等”关系:A=B(5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”4.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集。有n个元素的集合,含有2n个子集,2n-1个真子集(真子集总比子集少一个)5、集合的性质即:①任何一个集合是它本身的子集。AA②空集是任何集合的子集③空集是任何一个非空集合的真子集课时三、集合的运算运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={x|xA,或xB}).全集:一般,若一个集合汉语我们所研究问题中这几道的所有元素,我们就称这个集合为全集,记作:U设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作ACS,CSA=},|{AxSxx且韦恩图示AB图1AB图2性质A∩A=AA∩Φ=ΦA∩B=BAA∩BAA∩BBAUA=AAUΦ=AAUB=BUAAUBAAUBB(CuA)∩(CuB)=Cu(AUB)(CuA)U(CuB)=Cu(A∩B)AU(CuA)=UA∩(CuA)=Φ.SA

1 / 2
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功