20XX年南京市鼓楼区中考二模数学试卷(含答案)20XX年南京市鼓楼区中考二模数学试卷注意事项:本试卷共8页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上).......1.下列关于“-1”的说法中,错误的是()A.-1的相反数是1216等于A.-4B.4C.±4D.2563.北京时间20XX年2月11日23点30分,科学家宣布:人类首次直接探测到了引力波,印证了爱因斯坦100年前的预言.引力波探测器LIGO的主要部分是两个互相垂直的长臂,每个臂长4000米,数据4000用科学计数法表示为A.0.4×1034.计算(-2xy2)4的结果是A.8x4y8B.-8x4y8C.16xy8D.16x4y8B.0.4×104C.4×103D.4×104B.-1是最小的负整数C.-1的绝对值是1D.-1是最大的负整数5.如图,图(1)是一枚古代钱币,图(2)是类似图(1)的几何图形,将图(2)中的图形沿一条对称轴折叠得到图(3),关于图(3)描述正确的是图(1)图(2)图(3)A.只是轴对称图形C.既是轴对称图形又是中心对称图形B.只是中心对称图形D.既不是轴对称图形也不是中心对称图形6.将一块长a米,宽b米的矩形空地建成一个矩形花园,要求在花园中修两条入口宽均为x米的小道,其中一条小道两边分别经过矩形一组对角顶点,剩余的地方种植花草.现有从左至右三种设计方案如图所示,种植花草的面积分别为为S1、S2和S3,则它们的大小关系为共13页A.S3<S1<S2B.S1<S3<S2C.S2<S1<S3D.S1=S2=S3二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上).......17.使式子x的取值范围是▲.x+28.计算48-27的结果为9.把4x3-x分解因式,结果为▲.k10.反比例函数y=的图像经过点P(3,-2),则k=_____▲_____.x11??1+x≥0,x+1的解集为▲.12.不等式组?x+1>.?32?13.“微信发红包”是刚刚兴起的一种娱乐方式,为了解所在单位员工春节期间使用微信发红包的情况,小红随机调查了15名同事,结果如下表:则此次调查中平均每个红包的钱数的众数为元,中位数为元.14.如图,AB为⊙O的直径,弦CD与AB交于点E,连接AD.若∠C=80°,∠CEA=30°,则∠CDA=▲°.15.如图,二次函数y1=ax2+bx+c与函数y2=kx的图像交于点A和原点O,点A的横坐标为-4,点A和点B关于抛物线的对称轴对称,点B.(第14题)共13页(第15题)16.如图①,四边形ABCD中,若AB=AD,CB=CD,则四边形ABCD称为筝形.根据筝形与四边形、平行四边形、矩形、菱形、正方形的关系,请你在图②中画出筝形的大致区域,并用阴影表示.C图①(第16题)图②BD平行四边形四边形矩形方菱形三、解答题(本大题共11小题,共88分)1-x117.(10分)(1)解方程=2;x-22-x(2)计算a-21÷(1).a-1a-118.(9分)为了了解某校1500名初中生冬季最喜欢的体育活动,该校随机抽取了校内部分学生进行调查,整理样本数据,得到下列统计图.根据以上信息回答下列问题:跑步(第18题)(1)共抽取了▲名校内学生进行调查,扇形图中m值为▲.(2)通过计算补全直方图.(3)在各个项目被调查的学生中,男女生人数比例如下表:根据这次调查,估计该校初中生中,男生人数是多少?共13页19.(8分)把甲、乙两张形状、大小相同但是画面不同的风景图片都按同样的方式剪成相同的2段,混合洗匀.(1)从这堆图片中随机抽出一张,放回混合洗匀,再抽出一张.则抽出的这两张图片恰好是可以拼成同一张风景图片的概率为▲;(2)从这堆图片中随机抽出两张,求抽出的这两张图片恰好可以组成甲图片的概率.20.(9分)已知,如图,PA与⊙O相切于点A,过A作AB⊥OP,交⊙O于点B,垂足为H.连接OA、OB、PB.(1)求证:PB为⊙O的切线;(2)若OA=2,PH=4,求OP的长.HPB(第20题)21.(8分)在Rt△ABC中,∠C=90°.BC=3,CA=4,矩形DEFC的顶点D、E、F都在△ABC的边上.(1)设DE=x,则AD=▲(用含x的代数式表示);(2)求矩形DEFC的最大面积.CF(第21题)AD22.(8分)在某大型游乐场,景点A、B、C依次位于同一直线上(如图),B处是登高观光电梯的入口.已知A、C之间的距离为70米,EB⊥AC.电梯匀速运行10秒可从B处到达D处,此时可观察到景点C,电梯再次以相同的速度匀速运行30秒可到达E处,此时可观察到景点A.在D、E处分别测得∠BDC=60°,∠BEA=30°.求电梯在上升过程中的运行速度.AB(第22题)C共13页23.(7分)“郁郁林间桑葚紫,芒芒水面稻苗青”说的就是味甜汁多、酸甜适口的水果——桑葚.4月份,水果店的小李用3000元购进了一批桑葚,随后的两天他很快以高于进价40%的价格卖出150kg.到了第三天,他发现剩余的桑葚卖相已不大好,于是果断地以低于进价20%的价格将剩余的全部售出.小李前后一共获利750元,设小李共购进桑葚xkg.(1)根据题意完成表格填空;(用含x的代数式表示)(2)求x.24.(8分)如图,已知点A、点B和直线l.(保留作图痕迹,不写作法)(1)在图(1)中,利用尺规在直线l上作出点P,使得∠APB=90°;(2)在图(2)中,利用尺规在直线l上作出点P,使得∠CQD=60°.(1)(2)ll(第24题)25.(10分)如图○1,在400米环形跑道上,M、N两点相距100米,.甲、乙两人分别从M、N两点同时出发,按逆时针方向跑步.甲每秒跑5米,乙每秒跑4米.甲每跑200米停下来休息10秒钟,乙每跑400米停下来休息20秒钟.甲、乙两人各自跑完800米.设甲出发x秒时,跑步的路程为y米.图○2中的折线OABC表示甲在跑步过程中y(米)与x(秒)之间的部分函数关系.y(米100908070605040302010O2456810121416(图○2)1820222426x(秒共13页(1)请解释图中点B的的实际意义;(2)求线段BC所表示的y与x的函数关系式;(3)甲、乙两人在跑步过程中相遇的时间是__________________________秒.26.(11分)在□ABCD中,∠BAD、∠ABC、∠BCD、∠CDA平分线分别为AG、BE、CE、DG,BE与CE交于点E,AG与BE交于点F,AG与DG交于点G,CE与DG交于点H.(1)如图(1),已知AD=2AB,此时点E、G分别在边AD、BC上.①四边形EFGH是___________;A.平行四边形B.矩形C.菱形D.正方形②请判断EG与AB的位置关系和数量关系,并说明理由;(2)如图(2),分别过点E、G作EP∥BC、GQ∥BC,分别交AG、BE于点P、Q,连结PQ、EG.求证:四边形EPQG为菱形;图(2)B图(1)G(3)已知AD=nAB(n≠2),判断EG与AB的位置关系和数量关系(直接写出结论).共13页数学试题参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.二、填空题(本大题共10小题,每小题2分,共20分)7.x≠-2;839.x(2x+1)(2x-1)10.-611.13512.2015.-4<x<-3.16.三、解答题(本大题共11小题,共88分)16题17.(10分)(1)解:方程两边同乘以x-2得:1-x=-1-2(x-2).………………………2分解这个方程,得x=2.…………………………………………………………………4分经检验:x=2是增根,原方程无解.………………………………………5分a-21(2(1)a-1a-1a-2a-11=(…………………2分(a+1)(a-1)a-1a-1a-2a-1=……………………4分(a+1)(a-1)2-a1=-………………………5分a+118.(9分)解:(1)200,m=25%.………………………………………………………………4分(2)略………………………………………………………………………6分1234(3)1500×+40%×+)………………………………………8分4545=855(人)共13页答:估计该校初中毕业生中,男生人数为855人………………………………………9分119.(8分)(1)………………………………………………………2分4(2)画树状图或列表,………………………………………………………6分一共有12种等可能的结果,其中抽出的这两张图片恰好可以组成甲图片的情况有2种,∴抽出的这21两张图片恰好可以组成甲图片的概率==分12620.(9分)∵PA与⊙O相切于点A,∴OA⊥PA,……………………………………………………1分即∠PAO=90°,∵OP⊥AB,∴AH=BH,即OP垂直平分AB,∴PA=PB.在⊙O中,OA=OB,∵OP=OP,∴△OAP≌△OBP,……………………………………………………3分∴∠PBO=∠PAO=90°,即OB⊥PB.又∵点B在⊙O上,∴PB为⊙O的切线.………………………………………………………4分(2)∵AB⊥OP,∴∠AHP=90°,∴∠APO+∠PAH=90°,由(1)知∠PAO=90°,∴∠OAH+∠PAH=90°,∴∠OAH=∠APO,又∵∠AOH=∠POA,∴△OAH∽△OPA,………………………………………………………5分OAOH∴=OA2=OH3OP,OPOA∴22=(OP-4)2OP………………………………………………………7分共13页OP=2±22,∵OP>0∴OP=2+22………………………………………………………8分421.(8分)(1)x………………………………………………………2分34(2)矩形DEFC的面积=(4x)x……………………………………………………4分34=-x2+4x343=-(x-)2+3……………………………………………………6分32∵0≤x≤33∴当xDEFC的面积有最大值,最大值是3…………………8分222.(8分)设电梯在上升过程中的运行速度为xm/s.∵BE⊥AC,∴∠ABE=∠CBE=90°.在Rt△ABE中,∠ABE=90°,∠BEA=30°,ABAB∴tan∠BEA=tan30°=BEBE3AB403=AB=x.分340x3∴在Rt△BDC中,∠CBD=90°,∠BDC=60°,BCBC∴tan∠BDC=.∴tan60°=BDBDAB(第22题)CBC∴3=BC=103x.……………………………………………………4分10x4033∴AC=AB+BC=+3x=x.33由题意得AC=70,∴703x=70.……………………………………………………6分3∴x3.……………………………………………………7分∴电梯在上升过程中的运行速度为3m/s.……………………………………………………8分共13页3000300023.(7分)(1)?(1+40%)?(1-20%)?x-150………………………………………3分xx(2)根据题意得30003000150??(1+40%)+(x-150)??(1-20%)-3000=750,……………………………………………5分xx30003000或?40%-(x-150)?,xx解得:x=200,………………………………………………………………………………………………………………………………6分经检验x=200是原方程的解.答:小李共购进桑葚200kg.……………………………………………………………………………7分24.(8分)(1点P1、P2为所要作的点.……………………………