等离子体在催化反应中的应用陶旭梅刘改焕齐凤伟李代红印永祥四川大学化工学院2007.8成都2主要内容1等离子体技术与催化过程结合的可能性2等离子体技术应用于催化剂制备3等离子体与催化剂协同作用于化学反应4结论与展望31等离子体与催化过程结合41.等离子体与催化过程相结合1.1等离子体催化材料制备超细催化剂制备、表面改性、快速还原1.2等离子体诱导的化学反应特征快速、非平衡低温、选择性不易控制1.3催化反应特征需要较高温度,选择性好52等离子体应用于催化剂制备62.1热等离子体直接合成超细颗粒催化剂2.2等离子体喷涂技术制备负载型催化剂2.3催化剂表面处理2.4等离子体还原催化剂2.等离子体技术应用于催化剂制备72.1热等离子体直接合成超细颗粒催化剂Fig.1Schematicdrawingoftheplasma-chemicalinstallationforsynthesisandregenerationofcatalysts1.electric-arcdcplasmatron2.CWPCR3.quenchingdevice4.copperwater-cooledsectionsforthequenchingdevice5.power-trappingchamber6.filter7.vibrationpower-feedingdevice8.currentrectifier9.flow-meters10.bottleswithplasma-forming,powdercarryingandquenchinggasesG.P.Vissokov,M.I.Panayotova.Plasma-chemicalsynthesisandregenerationofcatalystsforreformingnaturalgas.CatalysisToday,2002,72:213-22182.1热等离子体直接合成超细颗粒催化剂(a)(b)(c)Fig.2SEMmicrographs(a)aluminapriortoplasmatreatment(b)Pd/aluminaafterpassagethroughanargonplasma(c)enlargement92.2等离子体喷涂技术制备负载型催化剂Fig.3PlasmasprayingappliedforcatalystpreparationChang-junLiu,GheorghiP.Vissokov,BenW.-L.Jang.Catalystpreparationusingplasmatechnologies.CatalysisToday,2002,72:173-184102.3催化剂表面处理Fig.4TheschematicrepresentativeofsetupforglowdischargecatalysttreatmentDang-guoCheng,XinliZhu,YuhengBen,FeiHe,LanCui,Chang-junLiu.CarbondioxidereformingofmethaneoverNi/Al2O3treatedwithglowdischargeplasma.CatalysisToday,2006,115:205-21011首次以高频冷等离子体炬处理Ni/γ-Al2O3催化剂,代替常规制备方法中的焙烧和还原过程。Fig.5Apparatusschematicdiagramofplasmajet2.4等离子体还原催化剂1212%Ni/γ-Al2O3催化剂的制备常规浸渍法(C)浸渍:γ-Al2O3+Ni(NO3)2干燥:at110℃for5h焙烧:at550℃for5h还原:at750℃for2h等离子体焙烧还原法(PCR)浸渍:γ-Al2O3+Ni(NO3)2干燥:at110℃for5h等离子体还原:for10min2.4等离子体还原催化剂等离子体还原法(PR)浸渍:γ-Al2O3+Ni(NO3)2干燥:at110℃for5h焙烧:at550℃for5h等离子体还原:for10min13Fig.6EffectofreactiontemperatureoncatalyticactivityReactioncondition:mcatalyst=200mg,wtNi%=12%,T=600~900℃,GHSV=3.0×104mL/(g·h),CH4/CO2=4/6.2.4等离子体还原催化剂14Fig.6EffectofreactiontemperatureoncatalyticactivityReactioncondition:mcatalyst=200mg,wtNi%=12%,T=600~900℃,GHSV=3.0×104mL/(g·h),CH4/CO2=4/6.2.4等离子体还原催化剂15Fig.7XRDpatterns(A)C;(B)PC;(C)PCR(△)γ-Al2O3;(○)Ni2.4等离子体还原催化剂162.4等离子体还原催化剂Fig.8H2-TPD(A)C;(B)PC;(C)PCR172.4等离子体还原催化剂Fig.9CO2-TPD(A)C;(B)PC;(C)PCR18Fig.10TGAprofileofNi/γ-Al2O3catalystafterreactionat800℃for5h(A)C;(B)PC;(C)PCR(A)(B)2.4等离子体还原催化剂(C)19Table1TheTGAanalysesofusedcatalystConditions:Reactiontemperature=800℃,GHSV=3.0×104mL/(g·h),CH4/CO2=4/6,reactiontime=5h.2.4等离子体还原催化剂20结论耗时短高分散度更好的低温活性更好的抗积碳性2.4等离子体还原催化剂213等离子体和催化剂协同作用223.等离子体和催化剂协同作用2介质阻挡放电3微波放电4射频放电脉冲电晕放电15冷等离子体炬6热等离子体233.等离子体和催化剂协同作用冷等离子体炬CH4-CO2重整制合成气Fig.11Schematicdiagramofexperimentalprocess1.CH4;2.CO2;3.N2;4.needlenozzle;5.rotormeter;6.mixingdevice;7.powersupply;8.reactor;9.catalystbed;10coolingsystem243.等离子体和催化剂协同作用冷等离子体炬CH4-CO2重整制合成气010203040506070plpl+载体pl+催化剂转化率/%二氧化碳甲烷6065707580859095100plpl+载体pl+催化剂选择性/%一氧化碳氢气Fig.12EffectofcatalystonthereactionReactioncondition:CH4flux=0.2m3/h,CO2flux=0.3m3/h,N2flux=0.5m3/h,inputpower=770W,GHSV=6.67×104mL/(g·h)(pl-plasma,catalyst:12%Ni/Al2O3)253.等离子体和催化剂协同作用热等离子体CH4-CO2重整制合成气Fig.13Thermalplasmaprocessingsystem1.plasmagenerator2.feedinletring3.adiabaticfixedbedreactor4.coolingsystem5.DCpowersupply6.gaschromatograph263.等离子体和催化剂协同作用热等离子体CH4-CO2重整制合成气01020304050607080901001.51.71.92.12.32.5thetotalfeedflux(m3/h)conversion(%)CH4(withoutcatalysts)CO2(withoutcatalysts)CH4(withcatalysts)CO2(withcatalysts)01020304050607080901001.51.71.92.12.32.5thetotalfeedflux(m3/h)selectivity(%)CO(withoutcatalysts)H2(withoutcatalysts)CO(withcatalysts)H2(withcatalysts)Figure14EffectoftotalfeedfluxonthereactionReactioncondition:mcatalyst=60g,CH4/CO2=4/6,N2flux=1.7m3/h,inputpower=9.6kW(catalyst:commercialZ107Ni/Al2O3)274结论及展望284.结论及展望结论2等离子体与催化剂协同作用:在等离子体反应系统中加入一定量的催化剂,可以提高反应性能,同时催化剂的选择性活化可以改变产物的分配。等离子体既可以应用于制备新的催化剂,也可以用于已有催化剂的表面改性和还原。“等离子体”催化剂具有比表面大、还原速率快、催化组分晶格缺陷等优点,从而导致催化活性的提高。1294.结论及展望展望等离子体与催化剂的协同作用机理有待进一步研究30