实际问题与反比例函数第一课时课件-数学九年级下第26章26.2.1人教版资料

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

人教版九年级数学下册•1、能运用反比例函数的概念和性质解决实际问题。•2、能够把实际问题转化为反比例函数这一数学模型,从而解决问题。的面积。)求三角形(两点的坐标。、)求(两点。、的图像交于点和一次函数如图,反比例函数OABBABA212xyx8-yOxMNBAy例1:市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室.(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?解:(1)根据圆柱体的体积公式,我们有s×d=104变形得:即储存室的底面积S是其深度d的反比例函数.dS104)0(ddS解:(2)把S=500代入,得:dS104d104500答:如果把储存室的底面积定为500,施工时应向地下掘进20m深.m2(2)公司决定把储存室的底面积S定为500m2,施工队施工时应该向下掘进多深?20d解得:解:(3)根据题意,把d=15代入,得:dS10415104s解得:S≈666.67答:当储存室的深为15m时,储存室的底面积应改为666.67才能满足需要.m2(3)当施工队按(2)中的计划掘进到地下15m时,碰上了坚硬的岩石.为了节约建设资金,储存室的底面积应改为多少才能满足需要(保留两位小数)?1、已知某矩形的面积为20cm2,(1)、写出其长y与宽x之间的函数表达式;(2)、当矩形的长是为12cm,求宽为多少?当矩形的宽为4cm,其长为多少?(3)、如果要求矩形的长不小于8cm,其宽至多要多少?)0()1(20xyx.5,35)2(cmcmcm25)3(2.某蓄水池的排水管每时排水8m3,6h可将满池水全部排空.(1)蓄水池的容积是多少?解:蓄水池的容积为:8×6=48(m3).(2)如果增加排水管,使每时的排水量达到Q(m3),那么将满池水排空所需的时间t(h)将如何变化?答:此时所需时间t(h)将减少.(3)写出t与Q之间的函数关系式;解:t与Q之间的函数关系式为:Qt48解:当t=5h时,Q=48/5=9.6m3.所以每时的排水量至少为9.6m3.(5)已知排水管的最大排水量为每时12m3,那么最少多长时间可将满池水全部排空?解:当Q=12(m3)时,t=48/12=4(h).所以最少需4h可将满池水全部排空.(4)如果准备在5h内将满池水排空,那么每时的排水量至少为多少?例2:码头工人以每天30吨的速度往一艘轮船装载货物,把轮船装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,卸货速度v(单位:吨/天)与卸货时间t(单位:天)之间有怎样的关系?(2)由于遇到紧急情况,船上的货物必须在不超过5日内卸完,那么平均每天至少要卸多少吨货物?分析:(1)根据装货速度×装货时间=货物的总量,可以求出轮船装载货物的的总量;(2)再根据卸货速度=货物总量÷卸货时间,得到v与t的函数式。(2)把t=5代入得从结果可以看出,如果全部货物恰好用5天卸完,平均每天卸载48吨.若货物在不超过5天内卸完,平均每天至少卸货48吨.tv240解:(1)设轮船上的货物总量为k吨,则根据已知条件有k=30×8=240故v与t的函数式为(t>0);tv240485240v实际问题反比例函数建立数学模型运用数学知识解决反思总结4、学校锅炉旁建有一个储煤库,开学初购进一批煤,现在知道:按每天用煤0.6吨计算,一学期(按150天计算)刚好用完.若每天的耗煤量为x吨,那么这批煤能维持y天(1)则y与x之间有怎样的函数关系?(2)若每天节约0.1吨,则这批煤能维持多少天?分析:(1)首先求得煤的总量,然后利用耗煤量乘以天数等于煤总量可得函数关系式即可;(2)将每天的用煤量代入求得的函数解析式即可求解.解:(1)煤的总量为:0.6×150=90吨,∵x•y=90∴y=;x90(2)∵每天节约0.1吨煤,∴每天的用煤量为0.6-0.1=0.5吨,∴y==180天,∴这批煤能维持180天.5.090实际问题反比例函数建立数学模型运用数学知识解决本节课的学习,你有什么收获?能把实际问题,通过分析,转化为数学模型--反比例函数

1 / 19
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功