§5-4阶跃函数和阶跃响应一、阶跃函数1.单位阶跃函数的定义:)(t01单位阶跃函数)(tt0100)(ttt=t=0处不连续该函数的电路模型:表示1V直流电压源在t=0时接入电路,此前该电路一直处于输入短路状态,如图所示。1V)0(StRC2.延迟阶跃函数)(0tt00010)(tttttt=01延迟阶跃函数)(tt0t)()(ttf3.:表示在区间内即为原函数,区间恒为零。0t0t0)(00)()(ttftttf0tt)(tf000t)()(0tttft000)(0)()(tttftttttf故,阶跃函数可以表示电路的激励和响应。如RC零状态响应电路中:V)()(SStUtu电路的激励:V)()1()(teUtuRCtSC电路的响应:例:用阶跃函数表示以下图中所示波形。)(tf0t02tt011)2()(2)()(00ttttttf解:1t2t3t1)(tft320解:)(3)()()()(321ttttttttf)(tft101解:)()(tttf0)(tf1t1解:)1()()(tttttf二、阶跃函数在一阶电路中的应用SR+uS-i+uR-+uC-例:0)0(Cu1.若,即相当于在t=0时,S合上,。V)(StuV1SuV)()1()(tetutCV)()1()(00ttetuttC--V)(0Sttu-0ttV1Su2.若,即相当于在时,S合上,。说明:由时不变电路的性质得到:作用下,响应为;则作用下,响应为。)(t)(ts)(0tt)(0tts15kR5VF1CCuS2110V例:开关S在t=0时由1→2,t=10ms时,再从2→1。求:uC(t),并画出波形。(V))(Stu10)ms(t0015+uS(t)-15kR+uC(t)-F1C解:V)()1()(15tetutC)10(15)(155)(Stttu)()(Sttu时(V))(Stu10)ms(t0015+uS(t)-15kR+uC(t)-F1C解:V)()1()(15tetutC)()(Sttu时)10(15)(155)(Stttu时V)10()1(15)()1(155)(151015tetetuttCV)10()1(15)()1(155)(151015tetetuttCV5)(0tutC,因此,当V1510)(ms10015tCetut,V3.75)(,ms1015)10(tCetut波形:(V))(tuCt(ms).3V20ms15V0作业:P.1245-17;5-18一阶动态电路例题。mA5)(tiL0t例:一纯电阻网络N,接成图(a)时,测得;V6)(tuC接成图(b)时,测得如接成图(c),并已知,,,V4)0(k8.010CuRFC求:时,。、)()(tituCCN10V(a)8k.0F106VCuN10V(b)1H5mALiN10V(c)RCCu14V0t解:,,5mA6VSCOCIU1.2k560R6V(d)RCCu14V0t1.2kCi用三要素法:V4)0()0(CCuuV20146)(Cus1020101010)8.02.1()(3630--=CRR0V1620)204(20)(5020103teetuttC,0mA8)]50()16[(10)()(50505teedttduCtittCC,例:如图电路,t=0时S闭合,已知,2V)0(Cu(3)分析、判断电路的工作情况。(1)若,求。s5.0g)(tuC(2)若,求。)(tuC2sg解:先求除C以外部分电路的戴维南等效电路。Siguii11R2+u1-1gu1A12R1+u-ii1iSR2+u1-1gu1A12R1S+uC-CF61iS1112)12(2)(ugiuguiRu1)(1111guiiguiRuSgiu111代入gigu112g13OCU0R(1)当,s5.0g。,64V0OCRU+uC-+UOC-0RF61s1V4)(0OCCRuuC已知2V)0(Cu0V64)]()0([)()(teeuuututtCCCC,(2)当,2sg。,35V0OCRUgigu112g13OCU0R+uC-+UOC-0RF61s5.05V)(0OCCRuuC已知2V)0(Cu0V35)]()0([)()(2teeuuututtCCCC,