20XX届高考文科数学---解答题专项训练中档题满分练(一)1.(2015·山东高考)在△ABC中,角A,B,C所对的边分别为a,b,c.已知cosB=33,sin(A+B)=69,ac=23,求sinA和c的值.2.一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c.(1)求“抽取的卡片上的数字满足a+b=c”的概率;(2)求“抽取的卡片上的数字a,b,c不完全相同”的概率.3.在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形.(1)若AC⊥BC,证明:直线BC⊥平面ACC1A1;(2)设D,E分别是线段BC,CC1的中点,在线段AB上是否存在一点M,使直线DE∥平面A1MC?请证明你的结论.4.(2015·湖北高考)设等差数列{an}的公差为d,前n项和为Sn,等比数列{bn}的公比为q,已知b1=a1,b2=2,q=d,S10=100.(1)求数列{an},{bn}的通项公式;(2)当d1时,记cn=anbn,求数列{cn}的前n项和Tn.中档题满分练(二)1.已知函数f(x)=2asinωxcosωx+23cos2ωx-3(a>0,ω>0)的最大值为2,且最小正周期为π.(1)求函数f(x)的解析式及其对称轴方程;(2)若f(α)=43,求sin4α+π6的值.2.(2015·西安调研)对于给定数列{an},如果存在实常数p,q,使得an+1=pan+q对于任意n∈N*都成立,我们称数列{an}是“M类数列”.(1)已知数列{bn}是“M类数列”且bn=3n,求它对应的实常数p,q的值;(2)若数列{cn}满足c1=-1,cn-cn+1=2n(n∈N*),求数列{cn}的通项公式,判断{cn}是否为“M类数列”并说明理由.3.如图,四棱锥PABCD的底面是边长为8的正方形,四条侧棱长均为217.点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,平面GEFH⊥平面ABCD,BC∥平面GEFH.(1)证明:GH∥EF;(2)若EB=2,求四边形GEFH的面积.4.某企业有甲、乙两个研发小组.为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:(a,b),(a,b-),(a,b),(a-,b),(a-,b-),(a,b),(a,b),(a,b-),(a-,b),(a,b-),(a-,b-),(a,b),(a,b-),(a-,b),(a,b)其中a,a-分别表示甲组研发成功和失败;b,b-分别表示乙组研发成功和失败.(1)若某组成功研发一种新产品,则给该组记1分,否则记0分.试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平;(2)若该企业安排甲、乙两组各自研发一种新产品,试估计恰有一组研发成功的概率.中档题满分练(三)1.已知向量a=(2sinx,-cosx),b=(3cosx,2cosx),f(x)=a·b+1.(1)求函数f(x)的最小正周期,并求当x∈-π12,2π3时f(x)的取值范围;(2)将函数f(x)的图象向左平移π3个单位,得到函数g(x)的图象,在△ABC中,角A,B,C的对边分别为a,b,c,若gA2=1,a=2,b+c=4,求△ABC的面积.2.(2015·安徽高考)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50),[50,60),…,[80,90),[90,100].(1)求频率分布直方图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60)的受访职工中,随机抽取2人,求此2人的评分都在[40,50)的概率.3.(2015·浙江高考)如图,在三棱柱ABCA1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D为B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求直线A1B和平面BB1C1C所成的角的正弦值.4.(2015·无锡质检)各项均为正数的数列{an}的前n项和为Sn,已知点(an-1,an)(n∈N*,n≥2)在函数y=3x的图象上,且S4=80.(1)求数列{an}的通项公式;(2)在an与an+1之间插入n个数,使这n+2个数组成公差为dn的等差数列,设数列1dn的前n项和为Pn.①求Pn;②若16Pn+6n3n≤40027成立,求n的最大正整数值.压轴题突破练1.(2015·四川高考)已知函数f(x)=-2xlnx+x2-2ax+a2,其中a0.(1)设g(x)是f(x)的导函数,讨论g(x)的单调性;(2)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.2.(2015·北京高考)已知椭圆C:x2+3y2=3,过点D(1,0)且不过点E(2,1)的直线与椭圆C交于A,B两点,直线AE与直线x=3交于点M.(1)求椭圆C的离心率;(2)若AB垂直于x轴,求直线BM的斜率;(3)试判断直线BM与直线DE的位置关系,并说明理由.3.(2015·浙江高考)设函数f(x)=x2+ax+b(a,b∈R).(1)当b=a24+1时,求函数f(x)在[-1,1]上的最小值g(a)的表达式;(2)已知函数f(x)在[-1,1]上存在零点,0≤b-2a≤1,求b的取值范围.4.已知椭圆x2a2+y2b2=1(a>b>0)的离心率为e,半焦距为c,B(0,1)为其上顶点,且a2,c2,b2依次成等差数列.(1)求椭圆的标准方程和离心率e;(2)P,Q为椭圆上的两个不同的动点,且kBP·kBQ=e2.(ⅰ)试证直线PQ过定点M,并求出M点坐标;(ⅱ)△PBQ是否可以为直角三角形?若是,请求出直线PQ的斜率;否则请说明理由.参考答案中档题满分练(一)1.解在△ABC中,由cosB=33,得sinB=63,因为A+B+C=π,所以sinC=sin(A+B)=69.因为sinC<sinB,所以C<B,可知C为锐角.所以cosC=539.因此sinA=sin(B+C)=sinBcosC+cosBsinC=63×539+33×69=223.由asinA=csinC,可得a=csinAsinC=223c69=23c,又ac=23,所以c=1.2.解(1)由题意,(a,b,c)所有的可能为(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种.设“抽取的卡片上的数字满足a+b=c”为事件A,则事件A包括(1,1,2),(1,2,3),(2,1,3),共3种.所以P(A)=327=19.因此,“抽取的卡片上的数字满足a+b=c”的概率为19.(2)设“抽取的卡片上的数字a,b,c不完全相同”为事件B,则事件B-包括(1,1,1),(2,2,2),(3,3,3),共3种.所以P(B)=1-P(B-)=1-327=89.因此,“抽取的卡片上的数字a,b,c不完全相同”的概率为89.3.(1)证明因为四边形ABB1A1和ACC1A1都是矩形,所以AA1⊥AB,AA1⊥AC.因为AB,AC为平面ABC内两条相交直线,所以AA1⊥平面ABC.因为直线BC⊂平面ABC,所以AA1⊥BC.又由已知,AC⊥BC,AA1,AC为平面ACC1A1内两条相交直线,所以BC⊥平面ACC1A1.(2)解取线段AB的中点M,连接A1M,MC,A1C,AC1,设O为A1C,AC1的交点.由已知可知,O为AC1的中点.连接MD,OE,则MD,OE分别为△ABC,△ACC1的中位线,所以,MD綉12AC,OE綉12AC,因此MD綉OE.连接OM,从而四边形MDEO为平行四边形,则DE∥MO.因为直线DE⊄平面A1MC,MO⊂平面A1MC,所以直线DE∥平面A1MC.即线段AB上存在一点M(线段AB的中点),使直线DE∥平面A1MC.4.解(1)由题意有10a1+45d=100,a1d=2,即2a1+9d=20,a1d=2,解得a1=1,d=2或a1=9,d=29.故an=2n-1,bn=2n-1或an=19(2n+79),bn=9·29n-1.(2)由d1,知an=2n-1,bn=2n-1,故cn=2n-12n-1,于是Tn=1+32+522+723+924+…+2n-12n-1,①12Tn=12+322+523+724+925+…+2n-32n-1+2n-12n.②①-②可得12Tn=2+12+122+…+12n-2-2n-12n=3-2n+32n,故Tn=6-2n+32n-1.中档题满分练(二)1.解(1)f(x)=asin2ωx+3cos2ωx=a2+3sin(2ωx+φ)(其中cosφ=aa2+3,sinφ=3a2+3),由题意知:f(x)的最小正周期为π,由2π2ω=π,知ω=1,由f(x)最大值为2,故a2+3=2,又a>0,∴a=1,则有cosφ=12,sinφ=32,取φ=π3.∴f(x)=2sin2x+π3,令2x+π3=kπ+π2,得x=π12+kπ2(k∈Z).故f(x)的对称轴方程为x=π12+kπ2(k∈Z).(2)由f(α)=43知2sin2α+π3=43,即sin2α+π3=23,∴sin4α+π6=sin22α+π3-π2=-cos22α+π3=-1+2sin22α+π3=-1+2×232=-19.2.解(1)∵bn=3n,则bn+1=3n+3=bn+3,由“M类数列”定义,得p=1,q=3.(2)∵cn-cn+1=2n(n∈N*),∴cn+1-cn=-2n(n∈N*),则c2-c1=-2,c3-c2=-4,c4-c3=-8,…∴cn-cn-1=-2n-1(n≥2),以上式子累加得cn=-(1+2+4+…+2n-1)=1-2n(n≥2),其中c1=-1也满足上式.因此cn=1-2n(n∈N*),则cn+1=1-2n+1=2(1-2n)-1=2cn-1,{cn}是“M类数列”.3.(1)证明因为BC∥平面GEFH,BC⊂平面PBC,且平面PBC∩平面GEFH=GH,所以GH∥BC.同理可证EF∥BC,因此GH∥EF.(2)解连接AC,BD交于点O,BD交EF于点K,连接OP,GK.因为PA=PC,O是AC的中点,所以PO⊥AC,同理可得PO⊥BD.又BD∩AC=O,且AC,BD都在底面内,所以PO⊥底面ABCD.又因为平面GEFH⊥平面ABCD,且PO⊄平面GEFH,所以PO∥平面GEFH.因为平面PBD∩平面GEFH=GK,所以PO∥GK,且GK⊥底面ABCD,从而GK⊥EF.所以GK是梯形GEFH的高.由AB=8,EB=2得EB∶AB=KB∶DB=1∶4,从而KB=14DB=12OB,即K为OB的中点.再由PO∥GK得GK=12PO,即G是PB的中点,且GH=12BC=4.由已知可得OB=42,PO=PB2-OB2=68-32=6,所以GK=3.故四边形GEFH的面积S=GH+EF2·GK=4+82×3=18.4.解(1)甲组研发新产品的成绩为1,1,1,0,0,1,1,1,0,1,0,1,1,0,1,其平均数为x-甲=1015=23;方差为s2甲=115[(1-23)2×10+(0-23)2