On a localization of the UKK property and the Fixe

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

ONALOCALIZATIONOFTHEUKKPROPERTYANDTHEFIXEDPOINTPROPERTYINLw;1N.L.Carothers,S.J.DilworthandC.J.LennardAbstract.WeintroducealocalizationoftheuniformKadec-Kleepropertytoweaklycom-pactconvexsetswhichimpliesweaknormalstructure.WecharacterizethispropertyfortheLorentzspacesLw;1(0;1)andthusestablishthe xedpointpropertyforweaklycompactconvexsetsinthesespaceswhenevertheweightisstrictlydecreasing.Finally,weshowthatallnon-reflexivesubspacesofLw;1(0;1)failthe xedpointpropertyforclosedboundedconvexsets,whichistheanalogueforLw;1ofarecentresultofDowlingandLennardfornon-reflexivesubspacesofL1.1.IntroductionLetw:(0;1)![0;1)beanon-increasingweightfunctionsatisfyingthenormalizationconditionR10w(t)dt=1.TheLorentzspaceLw;1(0;1)consistsofallreal-valuedmeasur-ablefunctionsfde nedon(0;1)forwhichjfjpossessesanon-increasingrearrangementfwhichsatis eskfk=Z10f(t)w(t)dt1:Spacesofthistypewereintroducedin[17].Inadditiontothenormalizationconditionabove,weshallmakeonlytwostandingassumptionsaboutw:(i)w(t)!0ast!1,and(ii)R10w(t)dt=1.Inparticular,wedonotneedtoassumethatw(t)!1ast!0.ForourresultsinSection4weshallrequirewtobestrictlydecreasing.LetXbeaBanachspaceandletbeavectorspacetopologyonXthatisweakerthanthenormtopology(inthispaperonlytheweakandweak-startopologieswillappear).RecallthatXhastheKadec-Kleepropertyw.r.t.,denotedKK(),ifkxn−xk!0wheneverkxnk!kxkandxn!xw.r.t..AsequencehxniintheclosedunitballofX(denotedBa(X))issaidtobe-separated,denotedsep(hxni),ifinfn6=mkxn−xmk.WesaythatXhastheuniformKadec-Kleepropertyw.r.t.,denotedUKK(),if,given0,thereexists0suchthatwheneverhxniisa-convergent-separatedsequenceinBa(X)with-limitx,thenkxk1−.ThispropertywasintroducedbyHu [12]fortheweaktopologyandbyLennard[15]inthegeneralsetting.ResearchofS.J.DilworthwasdonewhileonsabbaticalleaveatBowlingGreenStateUniversityResearchofC.J.LennardwaspartiallysupportedbyaUniversityofPittsburghFASGrantTypesetbyAMS-TEX12N.L.CAROTHERS,S.J.DILWORTHANDC.J.LENNARDMuchoftherecentinterestinUKKpropertiesstemsfromthediscoveriesofvanDulstandSims[9]andLennard[15]thatUKK()impliesnormalstructurefor-compactconvexsets,whichinturnimpliesthe xedpointpropertyfornon-expansivemappingsbyatheoremofKirk[14].Bygeneralizingthepaper[3],inwhichtheimportantspecialcaseofLp;1(0;1)(cor-respondingtotheweightw(t)=(1=p)t1p−1)isconsidered,DilworthandHsu[5]recentlycharacterizedtheweightsw(t)forwhichLw;1(0;1)hasUKKforitsnaturalweak-startopology.Subsequentlyitwasshown[7]thatthesearepreciselytheweightsforwhich(t)=Rt0w(s)dsisuniformlyconcave:thatis,given2(0;1),thereexists()0suchthatforall0st1,wehaves+t2(s)+(t)2+t−st(t):ThestartingpointofthepresentpaperistheobservationthattheUKKcanbelocalizedtoweaklycompactsets,andthatthislocalizationisstillsucienttodeducethe xedpointpropertyforweaklycompactconvexsets(Theorem1).WecallthisnewpropertytheweakuniformKadec-Kleeproperty,denotedWUKK,andweobservethatitliesstrictlybetweentheKKandUKKproperties.InSection4weprove(Theorem8)thatinLw;1(0;1)theWUKKpropertyisequivalenttothemildrequirementthatwbestrictlydecreasing(equivalently,thatbestrictlyconcave).ThiscoincideswithSedaev'searliercharacterizationoftheKKproperty[18],andincombinationwithTheorem1itestablishesthe xedpointpropertyforamuchlargerclassofLw;1spacesthantheclassofspaceswiththeUKKpropertydescribedabove.Inparticular,theLorentzspacesdiscoveredrecentlyin[6],whichareisomorphictoL1(0;1)andisometrictocertainsubspacesofL1(0;1),allhavethe xedpointpropertyforweaklycompactconvexsets.TheproofofTheorem8exploitsthespecialformofweaklycompactsetsinLw;1(0;1)aswellasanintegralrepresentationforelementsofunitnorm;theseauxiliaryresultsarerecordedinSection3.Inthe nalsectionwegeneralizetherecenttheoremofDowlingandLennard[8]thateverynon-reflexivesubspaceofL1failsthe xedpointpropertyforclosedboundedconvexsets.Byestablishingtheexistenceofasymptotic`1sequencesasin[8],weprovetheanalogousresultforLw;1(0;1).2.ALocalizationoftheuniformKadec-KleepropertyHenceforthwedealexclusivelywiththeweaktopology,whichallowsustodropthe`'fromKK(),etc.Thefollowingde nitionisausefullocalizationoftheUKKproperty.De nition.WesaythatXisweaklyuniformlyKadec-Klee(WUKK)ifforeveryweaklycompactsetKBa(X)andforeach0thereexists0(dependingonandonK)ONALOCALIZATIONOFTHEUKKPROPERTY3suchthatwheneverhxniisan-separatedsequencewhosetermsbelongtoKandwhichconvergesweaklytoxthenkxk1−.Remark.NotethatforreflexivespacestheWUKKandUKKpropertiescoincide,andthatingeneralUKK)WUKK)KK.SincetherearereflexivespaceswhichareKKbutnotUKK[12],itfollowsthattheWUKKandKKaredistinctproperties.Theorem8belowprovidesexamplesofLorentzspaceswhichareWUKKbutnotUKK,butwedonotknowofanysimplerexamples.LetCbeaclosedboundedconvexsubsetofX.TheradiusofC,denotedrad(C),isde nedthus:rad(C)=inffsupfkx−yk:y2Cg:x2CgAsusual,thediameterofC,denoteddiam(C),isde nedtobesupfkx−yk:x;y2Cg.RecallthatXhasweaknormalstructure(WNS)ifrad(C)diam(C)foreveryweaklycompactconvexsubsetCwhichcontainsmorethanonepoint.ThenotionofaweaklyuniformlyKadec-Kleespaceseemsanaturaloneinviewofthefollowingtheorem.Theproofisare neme

1 / 15
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功