混凝土结构的腐蚀及防腐措施

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

混凝土结构一直被认为是一种节能、经济、用途极为广泛的人工耐久性材料,是目前应用较为广泛的结构形式之一.但随着结构物的老化和环境污染的加剧,其耐久性问题越来越引起国内外广大研究者的关注.由于勘察、设计、施工及使用过程中多因素影响,很多混凝土结构都先后出现病害和劣化,使结构出现了各种不同程度的隐患、缺陷或损伤,导致结构的安全性、适用性、耐久性降低,最终引起结构失效,造成资金的巨大浪费.从国外情况来看[1],美国与钢筋腐蚀有关的损失占总腐蚀的40%;前苏联工业建筑的腐蚀损失占工业固定资产的16%,仅混凝土和钢筋的腐蚀损失占GDP的1·25%;1999年,澳大利亚公布的腐蚀损失为GDP的4.2%.除此之外,北欧、英国、加拿大、印度、日本、韩国及海湾地区等不少国家都存在以基础结构设施为主的腐蚀.中国面临的问题同样很严峻.根据中国工程院2001~2003年《中国工业和自然环境腐蚀调查与对策》中的统计,1998年中国建筑部门(包括公路、桥梁建筑)的腐蚀损失为1000亿人民币[2].近年来,中国建筑行业的发展速度突飞猛进,一批批建筑物拔地而起,但钢筋混凝土基础的耐久性问题也逐渐暴露出来.所以,重视和加强钢筋混凝土基础结构的腐蚀性与防腐措施的研究已迫在眉睫.1腐蚀机理分析1·1混凝土的腐蚀机理混凝土的腐蚀是一个很复杂的物理的、物理化学的过程.由于混凝土腐蚀机理的复杂性,对混凝土腐蚀的分类还没达成一个共同的认识,但一般都倾向于采用前苏联学者B·M.莫斯克文为代表所提出的分类方法[3].将混凝土的腐蚀分为3类:溶蚀性腐蚀、某些盐酸溶液和镁盐的腐蚀、结晶膨胀型腐蚀.所以,混凝土的腐蚀机理可从以下3类入手:物理作用、化学腐蚀、微生物腐蚀.1·1·1物理作用物理作用是指在没有化学反应发生时,混凝土内的某些成分在各种环境因素的影响下,发生溶解或膨胀,引起混凝土强度降低,导致结构受到破坏.物理作用主要包括2类:侵蚀作用和结晶作用.(1)侵蚀作用:当环境中的侵蚀性介质(如地下软水,河流、湖泊中的流水)长期与混凝土接触时,将会使混凝土中的可溶性成分(如Ca(OH)2)溶解.在无压力水的环境下,基础周围的水容易被溶出的Ca(OH)2饱和,使溶解作用终止.侵蚀作用仅仅发生在混凝土表面,影响不大.但在流水或压力水作用下,Ca(OH)2会不断溶解、流失,使混凝土强度减小,pH值降低,孔隙率增大,腐蚀性介质更容易进入混凝土内部,如此循环,导致混凝土结构破坏.(2)结晶作用:混凝土是一种非常典型的孔隙材料.环境中的某些盐类侵入到混凝土的毛细孔道中,在湿度较大时会溶解,但在湿度较低或低温环境下会吸水结晶.随着孔隙中晶体的不断析出、积累,毛细孔中的晶体体积将不断膨胀,对混凝土孔壁造成极大的结晶压力,从而引起混凝土的膨胀开裂.寒冷地区的冻融破坏也属于此类反应.1·1·2化学腐蚀化学腐蚀是指混凝土中的某些成分与外部环境中腐蚀性介质(如酸、碱、盐等)发生化学反应生成新的化学物质而引起混凝土结构的破坏.化学腐蚀可归纳为两大类:分解类腐蚀和分解结晶复合类腐蚀.(1)分解类腐蚀混凝土中的有效成分与某些腐蚀性介质发生复分解反应,生成了新的物质.(2)分解结晶复合类腐蚀混凝土中的Ca(OH)2与腐蚀性介质发生反应,生成某些新的钙盐,这些钙盐在混凝土的毛细孔中可结合大量的水而形成体积较大的晶体,造成水泥石胀裂破坏.1·1·3微生物腐蚀从目前来看,生物对混凝土的腐蚀问题尚未引起国内重视[4].据了解,独联体国家由于混凝土遭受生物腐蚀所造成的经济损失,到20世纪90年代初已达到5·5亿美元/a,而且还有继续增加的趋势.生物对混凝土的腐蚀大致有2种形式:①生物力学作用.②类似于混凝土的化学腐蚀.1·2钢筋的腐蚀机理电化学腐蚀是混凝土中钢筋腐蚀的根本原因.钢筋发生电化学腐蚀需具备以下几个条件[5]:(1)有阴极、阳极和电位差;(2)有离子通路(电解质);(3)有电子通路.多数情况下,钢筋混凝土都满足钢筋腐蚀的电化学条件.通常在钢筋表面的非钝化区域处于活化状态,形成腐蚀电池的阳极,可以自由释放电子,形成电子通路;在钝化区将形成腐蚀电池的大阴极,在该区域钢筋表面存在足够多的水和氧(电解质)[5].由于钢筋材质和表面的非均匀性,钢筋表面总有可能形成电位差.因此,在潮湿环境下就可发生电化学反应,反应生成的Fe(OH)2不稳定,在氧气充足的情况下,会进一步氧化成红铁锈,体积膨胀数倍,使得混凝土表面胀裂,钢筋力学性能下降.2腐蚀因素及其作用规律钢筋混凝土基础属于地下结构.影响其腐蚀的因素主要有以下几种:混凝土的密实性、抗化学腐蚀性、碱骨料反应以及钢筋的锈蚀等.2·1密实性混凝土的密实性直接影响混凝土的其他耐久性因素,如抗冻性、抗化学侵蚀性等.由于水泥在水化过程中会出现一些毛细孔隙,所以混凝土结构不可能绝对密实.从理论上讲,硅酸盐水泥完全水化所结合的水量只占水泥质量的22.7%,但为了保证有必要的毛细孔作为供水通道,使水泥完全水化的最少需水量为43.8%.因此,实际用水量都要比理论值偏大,从而使水灰比增大,混凝土的密实性减小.2·2抗化学腐蚀性2·2·1硫酸盐腐蚀硫酸盐腐蚀在不同条件下主要有2种形式:E盐破坏和G盐破坏.E盐破坏即钙钒石膨胀破坏,通常发生在SO2-4质量浓度低于1000mg/L的情况下,其破坏产物为钙钒:4CaO·Al2O3·12H2O+3SO2-4+2Ca(OH)2+20H2O3CaO·Al2O3·3CaSO4·31H2O+6OH-,反应生成的钙钒石是溶解度极小的盐类矿物,极限石灰质量浓度只有0.045g/L,即使在很低质量浓度的石灰溶液中也能稳定存在.此类物质呈针柱状晶体,又称之为“水泥杆菌”,其体积增加了2.77倍,在混凝土内产生了巨大的膨胀应力.2·2·2镁盐腐蚀镁盐主要以MgSO4和MgCl2的形式存在.当渗入到混凝土中,将会与水泥石中的Ca(OH)2发生复分解反应:Ca(OH)2+MgSO4+2H2OCaSO4·2H2O+Mg(OH)2↓;Ca(OH)2+MgCl2CaCl2+Mg(OH)2↓.反应生成的固相物质Mg(OH)2积聚在混凝土孔隙内,在一定程度上可以阻止外界侵蚀性介质的侵入,但该反应消耗了大量的Ca(OH)2,使混凝土的pH值降低,导致水泥石中的水化硅酸钙和水化铝酸钙与呈酸性的镁盐发生反应.以MgSO4为例:3CaO·Al2O3·6H2O+3MgSO4+6H2O3(CaSO4·2H2O)+2Al(OH)3+3Mg(OH)2↓,3CaO·2SiO2·3H2O+3MgSO4+9H2O3(CaSO4·2H2O)+2SiO2·3H2O↓+3Mg(OH)2↓,反应生成的Mg(OH)2还能与铝胶、硅胶缓慢反应:2Al(OH)3+Mg(OH)2Mg(AlO2)2+4H2O;2SiO2·3H2O+2Mg(OH)22MgSiO3+5H2O,结果将导致水泥石的粘结力下降,混凝土的强度大大降低.2·2·3氯盐腐蚀这里的氯盐是指自由氯离子,已结晶固化的氯化物一般对混凝土不会有破坏作用.基于所处环境的不同,外部氯离子一般通过渗透、扩散等方式侵入混凝土中.它们可以和混凝土中的Ca(OH)2、3CaO·2Al2O3·3H2O等发生反应,生成易溶的CaCl2和带有大量结晶水且比反应物体积大几倍的固相化合物.反应式如下:Ca(OH)2+2Cl-CaCl2+2OH-;3CaCl2+3CaO·Al2O3·6H2O+25H2O3CaO·Al2O3·3CaCl2·31H2O.由上述反应式可以发现,Ca(OH)2的大量消耗,破坏了C—S—H凝胶和Ca(OH)2之间的平衡,导致C—S—H凝胶被大量分解,最终导致混凝土表面的溃散.此外,在混凝土干湿交替带,大量的CaCl2还会产生氯化钙结晶(CaCl2·6H2O)腐蚀.2·3钢筋锈蚀钢筋的锈蚀是一个电化学过程,由铁变成氧化铁,体积膨胀,钢筋锈蚀的不利影响主要表现在以下几个方面:(1)混凝土顺筋开裂.钢筋在锈蚀过程中,体积会膨胀,根据最终锈蚀产物的不同,可膨胀2~6倍,对混凝土造成巨大的膨胀应力,使混凝土沿钢筋产生顺筋裂缝.一般来说,当混凝土内钢筋腐蚀率达到1%左右时,混凝土表面将会产生顺筋裂缝.(2)钢筋与混凝土的粘结力下降.随着钢筋锈蚀反应的发生,钢筋与混凝土之间的粘结力将发生很大变化.在钢筋锈蚀初期(混凝土表面没有产生顺筋裂缝),钢筋与混凝土间的粘结力会随着锈蚀量的增加而有所提高,但当钢筋锈蚀到一定程度时(混凝土表面产生顺筋裂缝),粘结力将随锈蚀产物的增加而明显下降,甚至丧失,导致钢筋与混凝土不能协同工作.在荷载作用下,构件滑移增大,变形显著,严重时会使结构(构件)发生局部或整体失效.(3)钢筋有效面积减小.钢筋在锈蚀过程中,其表面形成的锈蚀产物呈膨松状,承载力几乎丧失,使钢筋能够承受荷载的有效面积减小,实际承载力下降.3防腐措施3·1重视选材3·1·1水泥水泥是混凝土的重要组成部分,其性质对混凝土结构耐久性有着重要影响.根据腐蚀环境的不同,合理选择水泥品种有利于提高混凝土的耐久性.水泥中的碱性物质能在钢筋表面形成钝化膜,这也是混凝土能够保护钢筋免遭锈蚀的基本条件.有资料表明[5]:当混凝土的pH值9.88时,钝化膜生成困难或已经生成的钝化膜逐渐破坏;当pH值处于9.88~11.5之间时,钢筋表面的钝化膜不完整,不能完全保护钢筋免受腐蚀;当pH值11.5时,钢筋才能完全处于钝化状态.然而随着水泥中碱含量的增加,发生碱骨料反应的概率也将增大,对混凝土的耐久性也不利.因此,无论选择低碱水泥还是高碱水泥,都应按实际情况考虑以上2种不利影响.如果有条件使用非碱活性骨料,那么水泥中的碱含量可不受限;若条件不允许,应严格控制进入混凝土中的K+、Na+,最大限度地保持混凝土的高碱环境;否则,要采用附加措施,如使用钢筋阻锈剂、环氧涂层钢筋等.对于硫酸盐腐蚀环境,可考虑选择抗硫酸盐硅酸盐水泥.但要根据实际的腐蚀环境,合理选择水泥品种.乔宏霞等通过研究表明[6]:抗硫酸盐水泥在抵抗硫酸盐侵蚀过程中有一定效果,但并不能在恶劣环境下坚持太长时间,尤其在干湿交替的恶劣环境下,抗硫酸盐水泥并不比普通水泥好.值得注意的是,抗硫酸盐水泥只是对一定质量浓度的硫酸根离子的纯硫酸盐有耐腐蚀性,并不能耐一切硫酸盐介质的腐蚀(如对硫酸铵、硫酸镁、硫酸等).一般来说,当SO2-4质量浓度低于2500mg/L时,可选择中抗硫酸盐水泥(C3A5%,C3S50%)或掺粉煤灰的普通水泥;当SO2-4质量浓度低于8000mg/L时,可选用高抗硫酸盐水泥(C3A2%,C3S35%)或掺粉煤灰的中抗硫酸盐水泥;当SO2-4质量浓度高于8000mg/L或处于干湿循环、冻融循环等严酷环境下,不能简单地选择抗硫酸盐水泥,应考虑其他措施.总的来说,在腐蚀环境下,水泥的选择应根据实际情况综合确定.但必须注意的是,在腐蚀环境下不应采用硅酸盐水泥,尤其不能用于永久性的地下基础结构.3·1·2外加剂外加剂是一种掺量小,但对混凝土性能影响巨大的新材料,也是研制高性能混凝土必不可少的成分之一.其优点虽然很多,但也有弊端.所以,在今后使用外加剂时,应着重注意以下几个方面:(1)深入研究外加剂的后期工作机理.由于外加剂的的发展历史并不长,人们对其后期工作机理研究得并不是很透彻,对它们进行全面、正确的认识还有待于长期的、大量的工程实践和研究;否则,难以保证其长期有效性.(2)综合考虑外加剂的所有不利影响.使用外加剂时,除了要看到它有利的一面,还要重视其不利的一面.(3)严格控制外加剂中的有害杂质含量.(4)积极推广技术成熟的外加剂产品,慎用技术不成熟的外加剂.3·1·3矿物掺合料矿物掺合料是影响混凝土耐久性的重要组分.大量的试验研究与工程实践表明,使用矿物掺合料能显著改善混凝土的微观结构,增加混凝土的密实性和抗冻性.尤其在硫酸盐环境、冻融环境下,合理使用矿物掺合料能显著提高混凝土的耐久性.尽管如此,在今后使用掺合料时还应注意2点:(1)加强对各种矿物掺合料的综合性能研究.同种掺合料会对混凝土耐久性产生多种不同的影响.如硅灰的

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功