GradedRingsandEquivariantSheavesonToricVarietiesMarkusPerlingDepartmentofMathematicsUniversityofKaiserslautern,Germanyemail:perling@mathematik.uni-kl.deOctober2001AbstractInthisnotewederiveaformalismfordescribingequivariantsheavesovertoricvarieties.ThisformalismisageneralizationofacorrespondenceduetoKlyachko,whichstatesthatequivariantvectorbundlesontoricvarietiesareequivalenttocertainsetsof ltrationsofvectorspaces.WesystematicallyconstructthetheoryfromthepointofviewofgradedringtheoryandthiswayweconsiderablyclarifyearlierconstructionsofKaneyamaandKlyachko.Wealsoconnecttheformalismtothetheoryof ne-gradedmodulesoverCox’homogeneouscoordinateringofatoricvariety.Asanapplicationweconstructminimalresolutionsofequivariantvectorbundlesofranktwoontoricsurfaces.1IntroductionIn[Kly90]Klyachkoshowedthatequivariantvectorbundlesonatoricvarietyareequiva-lenttocertainsetsof ltrationsofvectorspaces.Inthepreprint[Kly91]thisequivalencewasextendedtoequivarianttorsionfreesheavesonsmoothtoricvarietiesandappliedtomoduliproblemsforbundlesoverP2.Itwasclaimedtherethatresultsof[Kly90]concerningvectorbundlesareinasimilarfashionalsovalidfortorsionfreesheaves,butunfortunatelynoproofsweregiven.Theaimofthisnoteistopickupsomeoftheideasof[Kly91]andtodeliverproperde nitionsofthe ltration-formalismforequivarianttor-sionfreesheavesandtogeneralizeittoarbitraryequivariantcoherentsheavesonnotnecessarilysmoothtoricvarietes.OnebasicideaisthatifoneconsidersanequivariantquasicoherentsheafEoverthetoricvarietyX associatedsomefan (seesection2fornotation),thentheactionofthetorusTonitsa neT-invariantopensubsetsU , 2 ,inducesisotypicaldecompositionsofthemodulesofsectionsofEintoT-eigenspaces: (U ;E)=Mm2M (U ;E)m;1whereM =ZdimTdenotesthecharactergroupofthetorus.IncaseEiscoherent,theeigenspaces (U ;E)mare nite-dimensionalvectorspaces.Foreachm;m02Mthemodulestructureoverthecoordinateringk[ M]ofU inducesmaps (U ;E)m ! (U ;E)m0e7! (m0 m) ebymultiplicationwiththecharacter (m0 m).Thismultiplicationmapexistsifandonlyifm0 misanelementofthesemigroup M= \M.Sothesemigroup MinducesinanaturalwayapreorderonMbysettingm m0i m0 m2 M.Thesetofvectorspaces (U ;E)mandcharacters (m)formsadirectedfamilyofvectorspaceswithrespecttothispreorder,andwewilldenotesuchdataa -family.Weobtainforeach 2 suchafamily,andviceversa,givenasetof -familiesforall 2 ,weobtainasystemofsheavesE overeachU which,ifcertaincompatibilityconditionsareful lled,gluetoaglobalsheafoverthetoricvarietyX .Suchacompatiblesetof -familieswillbecalleda -family.Ultimately,wewillarriveatanequivalenceofcategoriesbetweenequivariantquasicoherentsheavesoverX and -families.IncasethatEistorsionfree,allthemapsinitsassociated -familyareinjectiveandonecanformulatetheresultintermsofmulti ltrationsofacertainlimitvectorspaceE0.ThisisessentiallytheformulationwhichKlyachkogavein[Kly91]andwhichgeneralizedtheearlier ltrationsforequivariantvectorbundlesof[Kly90].Weshowthattheconstructionsof[Kly90]and[Kly91]simplifyconsiderablyiftheysystematicallyarederivedfromthepointofviewofgradedringtheory.ThispointofviewalsohasbeenadoptedearlierbyKaneyamain[Kan75,Kan88]forclassi cationofequivariantvectorbundlesonsmoothtoricvarietesandespeciallyonPn.Moreover,wewillenhancetheseconstructionsbyshowinghow negradedmodulesoverthehomogeneouscoordinateringofatoricvariety([Cox95])canbeincorporated.AsanapplicationweconstructminimalresolutionsofequivariantvectorbundlesofranktwoonsmoothtoricsurfacesintermsofequivariantEuler-likeshortexactsequences.Inaforthcomingpaperwewillextendthisapplicationtoafullclassi cationofsuchvectorbundles.Planofthepaper:Insection2,wewillrecallsomebasicnotionsconcerningtoricvarieties.Section3collectsgeneralfactsofgradedringtheorywhichcannoteasilybefoundintheliterature.Insection4webrie ydesribetheconstructionofhomogeneouscoordinateringsovertoricvarietiesduetoCox.Themainpartofthisnoteissection5,wherewedevelopourformalismforequivariantsheaves,andweconcludewithanapplicationinsection6.Acknowledgements:IwouldliketothankProf.G.TrautmannandDr.J.Zintlformanydiscussionsonthesubject.2BasicFactsforToricVarietiesByanalgebraicvarietyoveranalgebraicallyclosed eldk,weunderstandaseparatedschemeof nitetypeoverspec(k),whichweassumetobereduced,ifnotstatedotherwise.AtoricvarietyXisanormalvarietywhichcontainsanalgebraictorusTasanopendense2subsetsuchthatthetorusmultiplicationextendstoanactionofthealgebraicgroupTonX.Forbackgroundontoricvarietieswerefertostandardliteraturesuchas[MO78],[Oda88]and[Ful93].Werecallfrom[MO78],xx5.3,5.4and[Ful93]somebasicfactswhichinthesequelwillfrequentlybeused.AtoricvarietyXisde nedbyafan containedintherealvectorspaceNR =N ZRofalatticeN =ZnandisdenotedX=X .LetMbethelatticedualtoNandleth;i:M N!ZbethenaturalpairingwhichextendstothescalarextensionsMR:=M ZRandNR.ElementsofMaredenotedbym,m0,etc.ifwrittenadditively,andby (m), (m0),etc.ifwrittenmultiplicatively,i.e. (m+m0)= (m) (m0).ThelatticeMisthenaturalgroupofcharactersofthetorusT=Hom(M;k ) =(k )n.Acone ofthefan isaconvexrationalpolyhedralconecontainedinNR.Fortheseconesthefollowingstandardn