2016年浙江省专升本《高等数学》试卷及解析一、选择题(5×4’)1.函数xxxf)(具有(A)A.有界性B.单调性C.奇函数D.周期性解:)(;01;1xfxxxxx有界2.已知,在),(ba内,有0)('0xf,则下面哪一个正确(C)A.0x是极值点B.))(,(00xfx是拐点C.可微D.)('xf连续解:可导可微,故选择C3.已知dxxfxfff)('',3)1(',2)1(,1)0('0则(A)A.2B.-2C.4D.-4解:2)12(3))0()1(()1('01)(0)1(')('01)('')(')(''101010fffxffdxxfxfxxxdfdxxfx4.已知ab0,则幂级数的收敛半径R=(A)A.aB.bC.a1D.b1解:aaabbabababababaRnnnnnnnnnnnnn010)(1)(limlim11lim11115.微分方程xxyyysin2'3''的特解形式(C)A.xdcxxxbaxxcos)(sin)(C.xdcxxbaxcos)(sin)(B.xbaxxsin)(D.xbaxxcos)(解:齐次方程02'3''yyy的两个根为2,121rr,且(i)不是特征方程的根,故xdcxxbaxycos)(sin)(.二、填空题(10×4’)6.2111lim1xxx解:2111lim)1)(1(1lim11lim111xxxxxxxxx7.)1ln(2xy的定义域为:),1()1,(解:11,012xxx或8.已知hfhffh)1()21(lim,2)1('0则-4解:原式=422)1('22)1()21(lim20fhfhfh9.已知02sinxxeyy,则dxyxeedyyycos2解:dxyxeedxydyyxeeyyxeeyyyyyyyycos2'cos2'02'')(cos10.不定积分Cxxxdxx)21(ln21ln2解:Cxxdxxxxxdxxxxxdfxdxx)21(ln21)1(21))(lnln(21)(ln21ln22222211.)12111(lim0nnnnn2ln解:2ln1ln2ln011ln11111lim1lim1011xdxxnininninnin12.定积分xxdx0sin2解:2)11(0cossin0xxxxdx13.微分方程02'3''yyy的通解:xxeCeCy221。解:特征方程:1,2023212rrrr通解:xxeCeCy22114.在xoy平面,已知)0,3,4(),6,3,1(ba,则ba(18,24,15)解:)15,24,18(343104610363034631kjikjiba15.与平面π:032zyx平行且距离为6的平面方程:09232zyxzyx或解:设平面方程为:93;)1(12306;032222或Dzyx三.计算题(4×7’+4×8’)16.函数0,120,1)(22xxxxaxxexfx,在0x的极限存在,求a的值。解:21,1211)12(lim)(lim212lim22lim21lim221lim1lim)(lim0000002200aaxxfaaxxxaxxexaxexaxxexfxxxxxxxxxxx17.0,12000,)1ln()(xxxxxxxxf,求)0('f解:1)0(1)0()0(112lim12lim0)0()(lim)0(1)1ln(lim0)0()(lim)0('''000'00'fffxxxxxxfxffxxxfxffxxxxx18.已知,2367)(2xxxxf,求拐点坐标解:332''22')2()1()12187(2)(,)2(8)1(1)(xxxxxxfxxxf令:,0)(''xf得0x又:)(''xf在0x处符号发生了变化)3,0(是其拐点19.解微分方程0'3''2yyxyx的通解解:令tex,则xtln,把y看作t的函数,则dtdydtdxdtdyxyx'同理,dtdydtydyx222''所以原方程等价于0222ydtdydtyd即1,0)1(212rrrxxCCetCCytln)(212120.计算xdxx2cos解:Cxxxxdxxxxxdxdxx)2cos212sin(21)2sin2sin(21)2(sin212cos21.计算dxxx532231解:23ln2ln3ln12ln))1(1)2(1()2)(1(1231535353532xxdxxxdxxxdxxx22.计算dxxx2111解:32)1(32)1()1(12110232210212210211xxdxdxxxdxxx23.将函数2)1(1)(xxf展开成x的幂级数解:1111101102)1()1()1()1()1()1(1)(nnnnnnnnnnnnxnxnxxxxf)11()1()1()1(102xxnxnnn四.综合题24.求11lim)(22nnnxxxf的表达式。解:(1)当1x时,02nx,有11010)(xf(2)当1x时,12nx,有01111)(xf(3)当1x时,10101)1(1)1(1lim)(22nnnxxxf1,11,01,1)(xxxxf25.当0x时,求证:2211cosxx.证:令xxxfxxxfsin)(,211cos)('2)(,0cos1)('''xfxxf单调递增)(,0)0()(''xffxf单调递增2211cos,0)0()(xxfxf26.已知,)(,)()0(21xfdxxff在(0,2)上可导,证明至少存在一点,使得0)('f证:)()0()()()12()(21ffffdxxf又)(xf在[0,2]上连续,在(0,2)上可导由罗尔定理得:0)('f