第七章-生物可降解塑料

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2020/2/27EnvironmentalBiotechnology1生物可降解塑料的生产和应用DrZhouHongboDepartmentofBiotechnologyCSU2第一节塑料废物污染和可降解塑料二十世纪七十年代以来塑料工业得到迅猛的发展,无论是工业、农业、建筑业,还是人们的日常生活无不与塑料密切相关。化学合成塑料在自然环境中很难分解,亦不会被腐蚀,燃烧处理又会产生有害气体,塑料垃圾对环境造成了巨大的危害。3普通塑料对环境污染的特点成分为合成树脂(1)污染范围广(2)污染物增长量快。全世界每年对塑料的需求量为1亿吨。美国专家估计每10年产量将增加1倍。1995年我国的塑料需求量为600万吨,其中对环境有威胁的地膜为88万吨,包装用品为150-200万吨。美国、日本的塑料垃圾占垃圾总量的7%。4普通塑料对环境污染的特点-续(3)处理难。塑料具有耐酸碱、抗氧化、难腐蚀、难降解的特性,埋地处理百年不烂;燃烧时产生大量有毒气体,如HCl、SOx、CO等。5普通塑料对环境污染的特点(4)回收利用难。塑料制品种类多,填料、颜料多样,难以分拣回收再利用。(5)生态环境危害大。地膜降低耕地质量,农作物植株矮小,抗病力差。6研究和开发生物可降解塑料已迫在眉捷用可生物降解塑料代替部分石油化工合成塑料,禁用某些塑料制品如意大利已立法规定自1991年起所有包装用塑料都必须生物可降解,我国也已开始考虑禁用塑料方便餐盒等不可降解的塑料制品。生物可降解塑料7国内外出现的生物可降解塑料PCL-聚已内酰胺;PVA-聚乙烯醇;PE-聚乙烯8生物可降解塑料的特点工艺简单生产过程污染轻生物可降解性和生物可相容性可进行高分子材料的结构调整:控制营养、环境条件9第二节、PHAs的生物合成与应用采用微生物发酵法生产的聚-β-羟基烷酸(简称PHAs),成为应用环境生物学方面的一个研究的热点聚-β-羟基丁酸——PHB3-羟基丁酸与3-羟基戊酸的共聚物——P(3HB-co-3HV)或PHBV10PHAs除具有高分子化合物的基本特性,如质轻、弹性、可塑性、耐磨性、抗射线等外,还具有生物可降解性和生物可相容性。PHAs香波瓶100年9个月合成塑料PHAs原料降解11一、PHAs的结构、物理化学性质和应用多种微生物在一定条件下能在胞内积累PHAs作为碳源和能源的贮存物。由于PHAs具有低溶解性和高分子量,它在胞内的积累不会引起渗透压的增加,是理想的胞内贮藏物,比糖原、多聚磷酸或脂肪更加普遍地存在于微生物中。PHAs的通式可写成:2_______RC__On___OCHCH单体数目12R为甲基时,单体为β--羟基丁酸(HB);R为乙基时,单体为β--羟基戊酸(HV);R为丙基时,单体为β--羟基已酸(HC);R为丁基时,单体为β--羟基庚酸(HH);R为戊基时,单体为β--羟基辛酸(HO);R为已基时,单体为β--羟基壬酸(HN);R为庚基时,单体为β--羟基癸酸(HD);R为辛基时,单体为β--羟基十一酸(HUD);R为壬基时,单体为β--羟基十二酸(HDD);R多为不同链长正烷基,也可以是支链的、不饱和的或带取代基的烷基13聚合物命名R为甲基时,其聚合物为聚β--羟基丁酸(PHB)R为乙基时,其聚合物为聚β--羟基戊酸(PHV)在一定条件下两种或两种以上的单体还能形成共聚物,其典型代表是3HB和3HV组成的共聚物P(3HB-co-3HV)。14每个PHAs颗粒含有数千条多聚体链。这些多聚物的物理化学性质和机械性能如韧度、脆性、溶点、玻璃态温度和抗溶剂性等与单体的组成有极大的关系。例如PHBV共聚物中β-羟基戊酸组分的增加可使熔点从180℃(PHB均聚物)降至75℃(PHBV共聚物中HV组分的摩尔分数为30~40%)。PHAs的结构、物理化学性质HV-β--羟基戊酸15大多数有关细菌PHAs的物化性质的研究是针对PHB和PHBV两种聚合物进行的。PHB是高度结晶的晶体,结晶度的范围在55-80%,其在物理性质甚至分子结构上与聚丙烯(PP)很相似,例如熔点、玻璃态温度、结晶度、抗张强度等,而比重大、透氧率低和抗紫外线照射以及具有光学活性、阻湿性等则是PHB的优点,见表7-2-1。PHAs的结构、物理化学性质-续1617PHB较脆和发硬,但可通过与适量HV共聚而补偿。随着PHBV中HV组分的增加,聚合物的劲度降低而韧性增加,且共聚物的熔点随着HV组分的增加而降低,使得较易对其进行热加工处理。单体4HB的聚合物或3HB与4HB的共聚物P(3HB-co-4HB)则是高弹体,且其生物降解的速度比均聚PHB或PHBV更快。PHAs的结构、物理化学性质-续HV-β--羟基戊酸HB-β--羟基丁酸18PHB的工业化应用主要存在两个缺点PHB较差的熔化稳定性,其分解温度约为200℃,该温度与其熔点相近(约175℃);可通过在发酵过程中加入3HV的前体合成PHBV共聚体或将PHB与其它多聚物相混合使用来解决;在环境条件下贮存数日后,PHB易发脆。PHB的老化问题可通过简单的淬火处理来较大程度地解决。19PHAs的应用shampoobottlesbicyclehelmet20二、PHAs的生物合成合成PHAs的主要微生物合成PHAs的主要基质PHAs的代谢途径与调控21能产生PHAs的微生物分布极广,包括光能和化能自养及异养菌计65个属中的近300种微生物。目前研究的较多的微生物:产碱杆菌属(Alcaligeneseurophus,现在更名为Ralstoniaeutropha)假单胞菌属(Pseudonomas)甲基营养菌(Methylotrophs)固氮菌属(Azotobacter)红螺菌属(Rhodospirilum)(一)合成PHAs的主要微生物22活性污泥中微生物产生的PHB23表7-4各种微生物利用不同碳源合成PHVs的情况及水平比较24真养产碱杆菌(Ralstoniaeutropha)为革兰氏阴性的兼性化能自养型细菌积累PHB可达细胞干重的90%以上能利用糖加丙酸或戊酸产生P(3HB-co-3HV)改变基质该菌还能将4HB和5HV结合到3HB的结构中去,形成4HB或5HV单体与3HB的共聚物。采用带有真养产碱杆菌PHB合成基因的重组大肠杆菌(E.coli)。工业化生产PHAs的微生物25RalstoniaeutrophaR.eutropha26(二)、合成PHAs的主要基质(1)、糖质碳源葡萄糖、蔗糖、糖蜜、淀粉等。(2)、甲醇甲醇是最便宜的基质之一,ICI拥有生产甲醇单细胞蛋白的技术经验,曾考虑用甲醇作基质生产PHB。甲醇菌积累PHB含量不高,PHB回收成本大,PHB的分子量较小。27283、气体H2/CO2/O2真养产碱杆菌等一些爆鸣气细菌能利用H2/CO2/O2产生PHB,其中H2作为能源,CO2是碳源。以H2作为基质按其价格和产率而言(见表1)在经济上是划算的,且H2又是一种干净的可再生资源。可以同时解决两个严重的环境污染问题:温室效应及废弃的非降解塑料对生态环境的危害。安全性问题:解决混合气体爆鸣的安全问题和气体的循环利用问题。控制基质气相中氧的浓度低于气体爆炸的下限(6.9%)是安全的。294、烷烃及其衍生物假单胞菌能利用中等链长的烷烃或其衍生物醇、酸等产生中等链长羟基烷酸的共聚物(PHAMCL),共聚物中单体的组成与基质碳架的长度有关。以辛烷作基质连续培养食油假单胞菌(P.oleovorans),稳定态细胞浓度11.6g/l,PHA的生产强度为0.58g/L·h,30(三)PHAs的代谢途径与调控PHAs的产生机理微生物在碳源过量而其他营养如氮、磷、镁或氧不足时,积累大量PHAs作为碳源和能源的贮存物,或作为胞内还原性物质还原能力的一种储备。当限制性营养物再次被提供时,PHAs能被胞内酶降解后作为碳源和能源利用。31•胞中积累的PHAs存在形式以单个粒子的形态存在,每个细胞含有的颗粒数量的大小随微生物种类而不同,在Ralstoniaeutropha中,每个细胞含有8-10个颗粒,每个颗粒直径大小为0.2-0.5μm;以非晶体形式存在。具有高度的折光性,颗粒外面包裹着一层膜,没有生物膜那样的典型双层结构,膜中含有PHAs合成酶的降解酶系统。32ScanningelectronmicroscopeofPHBgranulesinRalstoniaeutropha33补料分批培养45h收获的菌体细胞的电镜照相34PHAs的代谢途径不同微生物合成PHAs的途径不同,基质不同其合成途径也有差异(图7-2)。①真养产碱杆菌及多数细菌从糖合成PHB;②深红红螺菌从糖合成PHB;③食油假单孢菌等从链烃、醇及酸合成具有与基质链长有关的HA单位的PHAs;④一株产碱杆菌从长链偶碳脂肪酸合成PHB;⑤铜绿假单孢菌等从糖质碳源(如葡萄糖酸)合成具中链HA单位的PHAs;⑥真养产碱杆菌等利用糖加丙酸合成PHBV。HA-羟基烷酸35A36PHAs的生物合成和降解同时存在的丁酰CoA37基因重组细菌20世纪80年代后期开始将重组DNA技术应用于生物合成PHB,来自于多种细菌的PHA生物合成酶——PHA生物合成途径的关键酶,已被在分子水平进行了详细的研究,PHA生物合成酶基因已被克隆成功。3个实验室独立地将真养产碱杆菌H16的PHB生物合成基因phbA、phbB和phbC克隆并在大肠杆菌中表达。38基因重组细菌研究发现,在真养产碱杆菌中,PHA合成酶的结构基因排列在称为phbC-A-B的一个操纵子上,分别编码PHA合成酶、β-酮基硫酯酶和依赖于NADPH的乙酰乙酰CoA还原酶(见图7-4)。39三、PHAs的发酵生产PHAs实现大规模工业化生产的主要障碍是生产成本。英国帝国化学公司(ICI)认为影响PHAs生产成本的主要因素有菌种原料操作方式提取方法40因而降低PHAs的生产成本主要措施(1)采用廉价基质(如CO2、H2和O2,甲醇,乙醇,葡萄糖及来自农业废物的有机酸等)和提高产物对基质的产率系数,降低发酵原材料的成本;(2)提高生产强度(如选育高产菌株、采用合适的发酵生产方式等),以降低操作成本;(3)改进提取、纯化技术(如不采用价格昂贵的有机溶剂、简化操作等),以降低提取成本。41PHAs的流加发酵在PHAs的生产中,通常采用分批发酵法和流加发酵法,有时用连续培养法来获得高的生产强度。由于Ralstoniaeutropha只有在某种营养成份氮、磷或氧等缺乏而碳源过量的不平衡生长条件下才能大量积累PHAs,一般可将发酵过程分成两个阶段来进行控制:第一阶段为菌体细胞的形成阶段,在此阶段微生物利用基质形成大量菌体,而多聚体PHAs的积累量很少;第二阶段为多聚体形成阶段,当培养基中某种营养耗尽时,细胞进入PHAs形成阶段,在此阶段PHAs大量形成而菌体细胞基本上不繁殖。42延长细胞的对数生长期,从而可获得较高的菌体浓度;减少菌体细胞在生长阶段积累多聚体,也需通过流加法来控制培养液中氨离子浓度不小于200mg/L,否则会降低共聚体的最终产率。在多聚体形成阶段,限制氮源能刺激细胞积累PHAs,但氮源的完全缺乏会极大地损害微生物细胞的合成活性,所以将在PHAs合成阶段以较低的速率限量流加氮源。PHAs的流加发酵43四、PHAs的提取技术有机溶剂法次氯酸钠提取法酶法表面活性剂-次氯酸钠法其他方法441.有机溶剂法对于由真养产碱杆菌(Ralstoniaeutropha)生产PHB,研究初期通常采用的提取方法是有机溶剂法。包括:氯仿、二氯乙烷、1,1,2—三氯乙烷、乙酸酐、碳酸乙烯酯及碳酸丙烯酯等。原理:有机溶剂一方面能改变细胞壁和膜的通透性,另一方面能使PHB溶解到溶剂中,而非PHB的细胞物质(NPCM)不能溶解,从而将PHB与其它物质分离开来。具体操作步骤如图7-5所示。45图7-5有机溶剂提取PHB的

1 / 63
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功