北大版高等数学课后题答案10

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

5pŒ˘61SK)SSSKKK10.11.|^´æny†:(1)?Œ∞Pn=1cosnn(n+1)´æ.y.|n+pPk=n+1coskk(k+1)|≤n+pPk=n+11k(k+1)=n+pPk=n+1(1k−1k+1)=1n+1−1n+p+11n.Ø?¿ε0,-N=[1ε],KnN,|n+pPk=n+1coskk(k+1)|1nε.d´æn,?Œ∞Pn=1cosnn(n+1)´æ.(2)?Œ∞Pn=11√nu.y.|n+pPk=n+11√k|≥p√n+p. Nıo,n=p=N+1,|n+pPk=n+11√k|≥qN+12≥1√2.d´æn,?Œ∞Pn=11√nu.(3)?Œ∞Pn=1an∞Pn=1bn´æ,3ŒN,n≥Nkan≤un≤bn,K?Œ∞Pn=1unǑ´æ.y.Ø?¿ε0,ˇǑ?Œ∞Pn=1an∞Pn=1bn´æ,⁄–3N′N,nN′,|n+pPk=n+1ak|ε,|n+pPk=n+1bk|ε.,¡,n+pPk=n+1ak≤n+pPk=n+1uk≤n+pPk=n+1bk.⁄–|n+pPk=n+1uk|ε.⁄–?Œ∞Pn=1un´æ.2.fi?Œ∞Pn=1an´æ,q?Œ∞Pn=1bnu,fl?Œ∞Pn=1(an±bn)·˜´æ?:‰u.˜K∞Pn=1bn=±∞Pn=1an±∞Pn=1(an±bn)Ǒ´æ.3.e?Œ·˜´æ.(1)∞Pn=1(√n+1−√n).ˇǑ'nPk=1(√k+1−√k)=√n+1−1,3n→∞vk4,⁄–?Œu.(2)∞Pn=11(2n−1)(2n+1).ˇǑnPk=11(2k−1)(2k+1)=nPk=112(12k−1−12k+1)=12(1−12n+1),3n→∞k4,⁄–?Œ´æ.(4)∞Pn=1cos2πn.ˇǑlimn→∞cos2πn=1,⁄–?Œu.1(7)∞Pn=1n√0.0001.ˇǑlimn→∞n√0.0001=1,⁄–?Œu.4.?Œ∞Pn=1un'SǑ{Sn}.en→∞{S2n}{S2n+1}´æ´æ~ŒA.y†?Œ∞Pn=1un´æ.y.Ø?¿ε0,ˇǑlimn→∞S2n=limn→∞S2n+1=A,⁄–3N0,nN,|S2n−A|ε,|S2n+1−A|ε.u·nN,|Sn−A|ε.⁄–limn→∞Sn=A,?Œ∞Pn=1un´æ.5.?Œ∞Pn=1un´æ,un≥un+1≥0(n=1,2,...),y†:limn→∞nun=0.y.Ø?¿ε0,ˇǑ?Œ∞Pn=1un´æ,d´æn,3N,nN,n+pPk=n+1unε2.u·nN,(2n)u2n≤22nPk=n+1ukε.(2n+1)u2n+1≤2nPk=n+1uk+2n+1Pk=n+1ukε.⁄–limn→∞nun=0.SSSKKK10.21.?e?Œæ5.(1)∞Pn=12nsinπ4n.ˇǑlimn→∞2nsinπ4n/12n=π,?Œ∞Pn=112n´æ,⁄–?Œ´æ.(2)∞Pn=11√2n3+1.ˇǑlimn→∞1√2n3+1/1√n3=1√2,?Œ∞Pn=11√n3´æ,⁄–?Œ´æ.(3)∞Pn=11n√n.ˇǑlimn→∞1n√n=1,⁄–?Œu.(4)∞Pn=14nn2+4n−3.ˇǑlimn→∞4nn2+4n−3/1n=4,?Œ∞Pn=11nu,⁄–?Œu.(5)∞Pn=1nn(n2+3n+1)n+22.ˇǑlimn→∞nn(n2+3n+1)n+22/1n2=limn→∞(1+3n+1n2)−n+22=e−32,?Œ∞Pn=11n2´æ,⁄–?Œ´æ.(6)∞Pn=2n(lnn)lnn.ˇǑlimn→∞ln[n(lnn)lnn/1n2]=limn→∞(3−lnlnn)lnn=−∞,⁄–limn→∞n(lnn)lnn/1n2=0.?Œ∞Pn=11n2´æ,⁄–?Œ´æ.(7)∞Pn=1ntan13n.ˇǑlimn→∞nqntan13n=13,dO{,?Œ´æ.2.?e?Œæ5.2(1)∞Pn=1n5n!.ˇǑlimn→∞(n+1)5(n+1)!/n5n!=0,dKO{,?Œ´æ.(2)∞Pn=1n!3n2.ˇǑlimn→∞n!3n2=+∞,?Œu.(3)∞Pn=13n·n!nn.ˇǑlimn→∞3n+1·(n+1)!(n+1)n+1/3n·n!nn=limn→∞3(1+1n)−n=3e−11,dKO{,?Œu.(4)∞Pn=11n1+1/n.ˇǑlimn→∞1n1+1/n/1n=1,?Œ∞Pn=11nu,⁄–?Œu.(5)∞Pn=1n2(3−1n)n.ˇǑlimn→∞nqn2(3−1n)n=13,dO{,?Œ´æ.(6)∞Pn=2n(lnn)n.ˇǑlimn→∞nqn(lnn)n=0,dO{,?Œ´æ.(7)∞Pn=11000nn!.ˇǑlimn→∞1000n+1(n+1)!/1000nn!=0,dKO{,?Œ´æ.(8)∞Pn=1(n!)2(2n)!.ˇǑlimn→∞((n+1)!)2(2n+2)!/(n!)2(2n)!=14,dKO{,?Œ´æ.(9)∞Pn=113n(n+1n)n2.ˇǑlimn→∞nq13n(n+1n)n2=e31,dO{,?Œ´æ.(10)∞Pn=21n(lnn)p(p0).p1,¨'R+∞21x(lnx)p=(lnx)1−p1−p|+∞2´æ,⁄–?Œ´æ.p=1,¨'R+∞21x(lnx)p=lnlnx|+∞2u,⁄–?Œu.0p1,¨'R+∞21x(lnx)p=(lnx)1−p1−p|+∞2u,⁄–?Œu.(11)∞Pn=31n(lnlnn)q(q0).ˇǑlimn→∞1n(lnlnn)q/1n(lnn)1/2=limn→∞(lnn)1/2(lnlnn)q=limx→+∞x1/2(lnx)q=+∞.?Œ∞Pn=31n(lnn)1/2u,⁄–?Œu.3.y†:e?Œ∞Pn=1un´æ,K?Œ∞Pn=1u2nǑ´æ.‰⁄Æ,`~‘†.y.ˇǑ?Œ∞Pn=1un´æ,⁄–limn→∞un=0,⁄–S{un}k..unM.Ku2n≤Mun.d’O{,?Œ∞Pn=1u2n´æ.‰⁄Æ,~X?Œ∞Pn=1(1n)2´æ,∞Pn=11nu.4.y†:e?Œ∞Pn=1a2n∞Pn=1b2n´æ,K?Œ∞Pn=1|anbn|,∞Pn=1(an+bn)2,∞Pn=1|an|nǑ´æ.y.dK^,?Œ∞Pn=1(a2n+b2n)´æ.du|anbn|≤12(a2n+b2n),(an+bn)2≤32(a2n+b2n),⁄–?Œ∞Pn=1|anbn|,∞Pn=1(an+bn)2Ǒ´æ.bn=1n,=?Œ∞Pn=1|an|n´æ.5.y†:e?Œ∞Pn=1un∞Pn=1vn´æ,fle?Œ·˜u?(1)∞Pn=1(un+vn);(2)∞Pn=1(un−vn);(3)∞Pn=1unvn..(1)‰u,ˇǑun+vn≥un,’O{,?Œ∞Pn=1(un+vn)u.(2)‰,’Xun=vn=1n,?Œ∞Pn=1(un−vn)´æ0.(3)‰,’Xun=vn=1n,?Œ∞Pn=1unvn´æ.6.limn→∞nun=l,¥0l+∞.y†?Œ∞Pn=1u2n´æ,∞Pn=1unu.y.˜klimn→∞nun=l0¿Xn¿'un0.⁄––bun0.ˇǑlimn→∞u2n/1n2=l2,?Œ∞Pn=11n2´æ,⁄–?Œ∞Pn=1u2n´æ.ˇǑlimn→∞un/1n=l,?Œ∞Pn=11nu,⁄–?Œ∞Pn=1unu.SSSKKK10.31.e?Œ·˜´æ?^´æ·Ø´æ?(1)∞Pn=1(−1)n−1(2n)2.ˇǑ∞Pn=1|(−1)n−1(2n)2|=∞Pn=11(2n)2´æ,⁄–?ŒØ´æ.(2)∞Pn=1(−1)n+1(2n−1)p(p0).S{1(2n−1)p}N“u0,⁄–T?Œ´æ.?Œ∞Pn=11(2n−1)p=p1´æ,⁄–?Œp1Ø´æ,˜K^´æ.(3)∞Pn=2(−1)nnlnn.S{1nlnn}N“u0,⁄–T?Œ´æ.·?Œ∞Pn=21nlnnu,⁄–?Œ^´æ.(4)∞Pn=1(−1)n√n−1n.“=∞Pn=1(−1)n1√n−∞Pn=1(−1)n1n,m?Œ´æ,⁄–?Œ´æ.·limn→∞√n−1n/1√n=1,⁄–?Œ∞Pn=1√n−1nu.⁄–?Œ^´æ.(6)∞Pn=1(−1)nn!3n2.ˇǑlimn→∞(n+1)!3(n+1)2/n!3n2=limn→∞n+132n+1=0.dKO{,?ŒØ´æ.4(7)∞Pn=2(−1)n1nsinπn.ˇǑlimn→∞1nsinπn/1n2=π,⁄–?ŒØ´æ.(8)∞Pn=1(−1)n+1tanϕn(−π2ϕπ2).ϕ=0,?Œw,Ø´æ.˜KT?ŒǑ?Œ,|tanϕn|N“u0,ˇd?Œ´æ.·limn→∞|tanϕn|/1n=|ϕ|,?ŒØ´æ.(10)∞Pn=1sin(π√n2+1).sin(π√n2+1)=(−1)nsinπ(√n2+1−n)=(−1)nsinπ√n2+1+n.ˇdT?ŒǑ´æ?Œ.·limn→∞sinπ√n2+1+n/1n=π2,?ŒØ´æ.2.fi?Œ∞Pn=1un´æ,y†?Œ∞Pn=1unnp(p0)∞Pn=1nn+1un´æ.y.Œ{1np}9{nn+1}Nk.,qˇǑ?Œ∞Pn=1un´æ,dCO{,?Œ∞Pn=1unnp∞Pn=1nn+1un´æ.3.y†?Œ∞Pn=1cosnϕnp(0ϕ2π)p1Ø´æ,0p≤1^´æ.y.(i)p1,?Œ∞Pn=11np´æ.du|cosnϕnp|≤1np,?Œ∞Pn=1cosnϕnpØ´æ.(ii)0p≤1.duŒ{1np}N“u0,'nPk=1coskϕk.,d)|XO{,?Œ∞Pn=1cosnϕnp´æ.nyϕ6=π,?Œ∞Pn=1cos2nϕ2np´æ.qdu?Œ∞Pn=112npu,⁄–?Œ∞Pn=11+cos2nϕ2npu.ˇǑ|cosnϕnp|≥cos2nϕnp=1+cos2nϕ2np,?Œ∞Pn=1cosnϕnpØ´æ.5./X∞Pn=1annx?Œ¡)|X?Œ.y†§ke5:e?Œ∞Pn=1annx0´æ(u),oxx0(xx0),?Œ∞Pn=1annxǑ´æ(u).y.?Œ∞Pn=1annx0´æ.xx0,Œ{nx0−x}Nk..dCO{,?Œ∞Pn=1annx=∞Pn=1annx0nx0−x´æ.6.?Œ∞Pn=1unØ´æ,y†?Œ∞Pn=12n−1nunǑØ´æ.y.|2n−1nun|≤2|un|,⁄–?Œ∞Pn=1|un|´æ¿X?Œ∞Pn=12n−1n|un|Ǒ´æ.SSSKKK10.451.e?Œ´æ.(1)∞Pn=1(lnx)n.=|lnx|1?Œ´æ,⁄–´æǑ(e−1,e).(2)∞Pn=112n−1(1−x1+x)n.=1−x1+x∈[−1,1)?Œ´æ,⁄–´æǑ(0,+∞).(3)∞Pn=11xnsinπ3n.|x|≤13,limn→∞1xnsinπ3n6=0,⁄–?Œu.|x|13,|1xnsinπ3n|≤1|x|nπ3n,d’O{,?ŒØ´æ.⁄–´æǑ(−∞,−13)∪

1 / 11
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功