便携式心电监护仪1.研究意义和目的以往专门测量心率值的仪器较少,人们为了知道自己的运动或者劳动强度是否超负荷,尤其是老年人或运动员等,他们都得赶到医院而不能实时测量和预知。为了观测“预防为主”的方针,为了实现人人能享受基本医疗保健的目标,把过去的以医院为轴心的医疗服务体系过度到以家庭为基础的社区卫生服务体系已成为必然趋势。所以便携式医疗仪器已相继问世。便携式心率测试仪属于一种集轻型化、一体化、可视化等优点的测试仪;同时它适合在家庭和社区条件下使用。心电诊断仪、心率计的应用在心血管疾病的研究和诊断方面发挥出显著的作用,它们所记录的心脏活动时的生物电信号,已成为临床诊断的重要依据。该心率仪可用于临床心率监护;并为体力劳动者劳动强度测定、运动员及士兵训练强度测定等提供确凿的和必不可少的生理指标。2.国内外研究现状与水平便携式医疗设备正不断改进数以百万计患者的医疗保健条件。现在外国的先进运动手表甚至能够无线记录用户的心率。未来,还将有众多能显著改善医疗实施及其效果的创新型医疗应用产品。满足便携式医疗领域的微处理器需求给半导体企业带来了挑战。虽然工程设计无外乎是在相对立的功能、规范以及空间限制条件之间进行取舍,但是这种平衡取舍在便携式医疗领域往往非常棘手。医疗市场的相关需求往往很难协调,如小尺寸与高功能性、低功耗与高性能模拟,以及超长电池使用寿命与高处理能力等。这些产品需要模数转换器(ADC)、可调节增益、电源管理以及液晶显示屏(LCD)等。这些都将是需要我们更多的去研究和发展拟采取的研究路线1.研究内容将脉搏通过传感器转为电压信号,再通过不同的集成芯片将电压信号完成放大、滤波、整流等一系列工作,然后利用单片机进行处理计算。实现在任何地点任何时间都能快速检测出人体的心率,达到集轻型化、一体化、可视化等优点于一身的系统。2.拟采取的研究方法了解课题所需知识点,然后翻阅相关资料和教材,通过网页搜索查找相关资料,计算各参数,了解各元器件的功能作用,设计电路图,用相关的仿真软件进行仿真,最后进行实物调试。3.具体的设计方案系统总体框图(1)传感器的选择①光电式传感器血液是高度不透明的液体,光照在一般组织中的穿透性要比血液中大几十倍,据此特点,采用光电效应手指脉搏传感器来拾取脉搏信号。血管的容积和透光度会随心搏的改变而改变,这样通过光电传感器可得到相应的光电流信号。采用红外反射传感器RPR220,通过手指的血液浓度会随着心脏的跳动发生变化,红外对管对应的信号便会发生相应的变化,采集此信号经过放大,滤波,比较等处理便可以得到理想的信号。。STC89C52单片机信号采集与处理复位电路时钟电路LED显示电路报警电路独立按键采用反射式的红外管。现在市场上的心率计普遍采用这种传感器来采集信号,因为此红外管接收和发射都在手指的同一侧,因此便不用考虑每个人手指情况不同所造成的麻烦。接收的是血液漫反射回来的光,此信号可以精确地测得血管内容积变化。○2集成传感器当前,市面上有很多类型的集成心电传感器,其灵敏度高,集成度高,直接就可以反映出心率的变化,且已包含了滤波等抗干扰电路,波形经过放大可以直接处理使用。缺点是价格非常昂贵,一般均在五百元以上,就本次设计来说,考虑到经费以及锻炼自己的目的,不选择使用该型传感器。综上所述,虽然光电式传感器的价格相对较高,但是为了测量方便和使本系统达到稳定性和准确性,所以选择红外反射传感器RPR220。(2)信号处理①前置放大LM324是四运放集成电路,它采用14脚双列直插塑料封装。它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。心率测试仪通过光电传感器获得脉搏信号的电压比较小,在几毫伏左右,且频率较低,所以需要低噪声,低漂移,高输入阻抗的放大器。本系统才用同相放大器,同相放大器具有输入阻抗高,输出阻抗很低的特点,广泛用于前置放大级。○2信号滤波由于脉搏信号的频率在1.33HZ左右,正常情况下不会出现高于2HZ的信号,因此需要设计一个低通滤波器,用来滤去高频信号。在这个系统中最大的干扰就是来自市电的50HZ干扰信号,考虑到有些病人在患病时可能会出现较高的脉搏,因此在1)无源滤波器采用RC低通滤波器。其特点是电路简单,阻带衰减太慢,选择性较差。2)二阶低通滤波器采用二阶有源滤波器,通带内幅频特性曲线比较平坦,而且二阶也可以达到较陡的衰减的特性。由于主要的干扰出现在50HZ左右,所以在截止频率较低时,采用二阶滤波器即可达到很好的滤波效果。综上所述,由于使用二阶有源滤波器能够很好的实现系统的滤波目的,所以选择使用方案2)。(3)整形电路由于单片机只能检测到数字信号,因此,经过信号调理电路后得到的模拟信号必须转换为数字信号。这里有两个方案可以选择。方案一:使用三极管进行整形.方案二:使用集成芯片74LS1374LS13为具有施密特触发器的两组4输入端与非门(正逻辑),通过74LS13实现对信号的整形,输出单片机可以处理的脉冲信号。由于三极管的调试较为复杂,且工作性能不如施密特触发器稳定,所以我们选用74LS13作为一个施密特触发器。(4)显示电路本系统使用四段数码管作为数据显示器,通过单片机对处理过的信号计数(心率),然后通过数码管动态显示将所测得的心率值显示出来,并同时将其心率值存储到单片机自带的EEPROM中,可以通过按键来提取其值。(5)报警电路报警电路是对每次脉冲的到来均响铃,与脉搏同步。这样,就可以通过声光的形式形象地把脉搏的快慢显示出来。此外,当所测得的心率值低于50次/分,或高于160次/分时,报警电路连续响铃。4进度安排1-4周:查阅文献,选题;5-8周:总体方案的确定,分析;9-12周:硬件电路图设计,分析;13-15周:编程,调试,将得出数据做分析比较;16周:准备答辩。5文献综述便携式心电监护仪的人机工程学设计便携式心电监护仪是一种心脏疾病医疗诊断的重要设备,针对其使用对象,它必须具有低功耗、小体积、轻质量、易携带、功能完善等特点,同时能够实时地对ECG信号进行采集、存储、分析、处理、显示和传输。因此,在其产品的系统设计过程中必须兼顾各应用的特点和功能,采用模块化设计理念,协调好患者、医生以及人机交互的关系。便携式心电监护仪的使用环境、内部原理及其特点,决定了便携式心电监护仪需联系医生和患者两个使用者,医生和患者作为便携式心电监护仪“人的因素”在设计中起着十分重要的作用便携式心电监护仪的硬件功能是采集人体ECG信号,对采集的ECG信号进行实时地存储、处理与分析,并将ECG波形与处理结果等信息显示给用户或通过无线形式传输给医疗机构,实现ECG信号实时监护。ECG信号拾取、放大及滤波电路在便携式心电监护仪中,ECG信号的拾取一般采用普通医用电极,也有的采用带有较高成本的蓝牙芯片作微型传感器由于人体体表中的ECG信号属于强噪声混杂下0.05~100Hz超低频的0.05~5mV微弱信号,具有低频特性、微弱性、不稳定性和随机性等特点。微弱的ECG信号同时受到人体内外的高频电磁场、工频、电极极化、测量设备本身等多种干扰源的影响,其微弱的特征被掩盖在复杂的诸多强干扰信号之中,故要求ECG信号的放大滤波电路必须满足高输入阻抗、高共模抑制比、高增益、低噪声、低漂移、合适的带宽和高安全性。因此,提取ECG信号的放大滤波电路一般由前置放大电路、右腿驱动电路、低通滤波电路、高通滤波电路、50Hz陷波电路和后置放大电路组成工频干扰通常是由周围的电子仪器、传输电线及设备内分布电容等产生的电场引起的。由于前级放大电路输出的ECG信号中还存有较强的工频信号干扰,须通过陷波电路将其滤除。ECG信号经前置放大电路进行信号放大和滤波后,转化为频带为0.05~100Hz的有用信号,但前置级放大电路对采集到的ECG信号只是初步放大,放大倍数较小,放大信号幅值仍比较低。为了提高ECG信号采集精度,必须对信号逐级放大,因此硬件电路中还需要有后置放大电路(或称主放大电路)。又由于ECG信号的幅值大小因人而异,从而要求后置放大电路能对ECG信号的强度即对后置放大器的放大倍数进行调节。基于此,一种方法是通过将后置放大电路中的反馈电阻换成可调电阻来实现放大倍数的调节,另一种方法则是利用电子开关和不同阻值的电阻通过程序选通控制来实现放大倍数调节便携式心电监护仪的通讯接口有多种,一般分为有线传输接口和无线传输接口有线传输以前通常采用RS232接口近距离向医院中心站的接收设备传输储存的ECG数据,如果要远距离传送则需要通过Modem拨号方式传输。ECG数据另一种远距离有线传送方法,是先把ECG数字信号经D/A和V/F转换成频率信号,然后将此频率信号转换成模拟信号,最后通过电话网络将模拟心电信号传输给医疗机构,医疗机构的接收设备再将此信号还原为ECG信号,现在已很少用了。随着技术的发展,目前的系统开始采用USB接口来近距离传送ECG数据,远距离传送则通过以太网或者其他的网络模块连接到Internet来进行ECG数据的传输。无线传输与有线传输相比,能够增强设备的灵活性,便携式心电监护仪以其便携、实时监护、使用灵活等特点,使得医院外长期或急救状态下的ECG监护成为现实,使患者能够及时得到病症诊断而不延误抢救时机,从而得以挽救其宝贵的生命,因此必将得到更广泛的应用。就目前来看,便携式心电监护仪未来发展趋势主要表现在以下几个方面:(1)进一步提高便携灵活性。大致可以通过四个方面来提高。大量采用贴片式元件,降低监护仪的体积;硬件功能能由软件来实现的尽量用软件来实现;将部分电路编程到可编程逻辑器件中去;采用无线通讯参考文献[1]白冰,张跃,万里.基于ARM的远程实时心电监护仪软件设计实现[J].计算机工程与设计,2009,30(12):2830-2833.[2]CHENHL.AremoteECGmonitoringsystem[C]//IEEEInternationalConferencesonInformationTheoryandInfor-mationSecurity,Beijing:2011:967-970.[3]张华.基于以太网的心电信号数据采集系统的研究与设计[D].镇江:江苏大学,2006.[4]王余涛.基于嵌入式系统的便携式心电监护系统的研制[D].哈尔滨:哈尔滨工业大学,2010.[5]王智洁,和卫星,吕继东.便携式无线心电采集装置的研究及实现[J].电子技术应用,2010,36(11):95-98,101.[6]王妮娜.嵌入式便携心电监护仪系统图形用户界面开发及优化研究[D].杭州:浙江大学,2008.[7]WANGP,LUZG..Designofasimple3-LeadECGacquisi-tionsystembasedonMSP430F149[C]//InternationalCon-ferencesonComputerandAutomationEngineering[8]刘欣添.基于PocketPC平台与蓝牙技术的掌上心电监护仪设计[D].沈阳:东北大学,2009.[9]王运鑫.基于以太网的心电信号数据采集系统的研究与设计[D].镇江:江苏大学,2007.[10]吕俊龙.基于ARM的无线生理信号检测装置的研究[D].镇江:江苏大学,2010.[11]李肃义,杨美玲,丁梅,等.动态心电采集记录系统的发展与展望[J].生物医学工程学杂志,2012,29(1):175-178.[12]TELLOPJP,MANJARRESO,QUIJANOM,etal.Re-motemonitoringsystemofECGandtemperaturesignalsusingbluetooth[C]//InternationalSymposiumsonInformationTechnologiesinMedicineandEducation