2012年全国各地中考数学真题分类解析汇编第11章_函数与一次函数

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

12013年全国各地中考数学真题分类汇编第11章函数与一次函数一.选择题1.(2012•益阳)在一个标准大气压下,能反映水在均匀加热过程中,水的温度(T)随加热时间(t)变化的函数图象大致是()A.B.C.D.考点:函数的图象。分析:根据在一个标准大气压下水加热到100℃后水温不会继续增加,而是保持100℃不变,据此可以得到函数的图象.解答:解:当水均匀加热时,吸热升温,当温度达到100℃时,水开始沸腾,此时温度又会保持不变.故B.点评:此题主要考查了函数的图象.解决本题时要有一定的物理知识,同时要知道水在沸腾过程中吸热,但温度保持不变.2.(2012成都)函数12yx中,自变量x的取值范围是()A.2xB.2xC.2xD.2x考点:函数自变量的取值范围。解答:解:根据题意得,x﹣2≠0,解得x≠2.故选C.3.(2012聊城)函数y=中自变量x的取值范围是()A.x>2B.x<2C.x≠2D.x≥24.(2012安徽)如图,A点在半径为2的⊙O上,过线段OA上的一点P作直线,与⊙O过A点的切线交于点B,且∠APB=60°,设OP=x,则△PAB的面积y关于x的函数图像大致是()2解析:利用AB与⊙O相切,△BAP是直角三角形,把直角三角形的直角边表示出来,从而用x表示出三角形的面积,根据函数解析式确定函数的图象.解答:解:∵AB与⊙O相切,∴∠BAP=90°,OP=x,AP=2-x,∠BPA=60°,所以AB=)2(3x,所以△APB的面积2)2(23xy,(0≤x≤2)故选D.点评:此类题目一般都是根据图形性质,用字母表示出这个变量,把运动变化的问题转化成静止的.再根据函数的性质解答.有时变化过程的有几种情况,注意它们的临界值.5.(2012乐山)若实数a、b、c满足a+b+c=0,且a<b<c,则函数y=ax+c的图象可能是()A.B.C.D.考点:一次函数图象与系数的关系。专题:常规题型。分析:先判断出a是负数,c是正数,然后根据一次函数图象与系数的关系确定图象经过的象限以及与y轴的交点的位置即可得解.解答:解:∵a+b+c=0,且a<b<c,∴a<0,c>0,(b的正负情况不能确定),a<0,则函数y=ax+c图象经过第二四象限,c>0,则函数y=ax+c的图象与y轴正半轴相交,纵观各选项,只有A选项符合.故选A.点评:本题主要考查了一次函数图象与系数的关系,先确定出a、c的正负情况是解题的关键,也是本题的难点.6.(2012南充)下列函数中是正比例函数的是()3(A)y=-8x(B)y=x8(C)y=5x2+6(D)y=-0.5x-1考点:正比例函数、反比例函数、一次比例函数二次比例函数专题:常规题型。分析:本题主要考查正比例函数、反比例函数、一次比例函数和二次比例函数的定义的理解解答:(A)y=-8x是正比例函数(B)y=x8是反比例函数(C)y=5x2+6是二次比例函数(D)y=-0.5x-1是一次比例函数所以答案选A点评:本题属于基础题,考查了学生对几种函数概念掌握的能力.一些学生往往对几种概念掌握不清楚,而误选其它选项.7.(2012•梅州)在同一直角坐标系下,直线y=x+1与双曲线的交点的个数为()A.0个B.1个C.2个D.不能确定考点:反比例函数与一次函数的交点问题。分析:根据一次函数与反比例函数图象的性质作答.解答:解:y=x+1的图象过一、二、三象限;函数的中,k>0时,过一、三象限.故有两个交点.故选C.点评:本题考查了反比例函数与一次函数的交点问题,只有正确理解性质才能灵活解题.8.(2012•资阳)如图所示的球形容器上连接着两根导管,容器中盛满了不溶于水的比空气重的某种气体,现在要用向容器中注水的方法来排净里面的气体.水从左导管匀速地注入,气体从右导管排出,那么,容器内剩余气体的体积与注水时间的函数关系的大致图象是()4A.B.C.D.考点:函数的图象。分析:根据水从左导管匀速地注入,气体从右导管排出时,容器内剩余气体的体积随着注水时间的增加而匀速减少,即可得出函数关系的大致图象.解答:解:∵水从左导管匀速地注入,气体从右导管排出时,容器内剩余气体的体积随着注水时间的增加而匀速减少,∴容器内剩余气体的体积与注水时间的函数关系的大致图象是C.故选C.点评:本题主要考查了函数的图象问题,在解题时要结合题意找出正确的函数图象是本题的关键.9.(2012•济宁)周一的升旗仪式上,同学们看到匀速上升的旗子,能反应其高度与时间关系的图象大致是()A.B.C.D.考点:函数的图象。专题:应用题。分析:根据旗子匀速上升可知,高度与时间的关系是一次函数关系,且随着时间的增大高度在逐渐增大,然后根据各选项图象选择即可.解答:解:∵旗子是匀速上升的,且开始时是拿在同学手中,∴旗子的高度与时间关系是一次函数关系,并且随着时间的增大高度在不断增大,纵观各选项,只有D选项图象符合.故选D.点评:本题考查了函数图象,根据题意判断出旗子的高度与时间是一次函数关系,并且随着时间的增大高度在不断增大是解题的关键.10.(2012娄底)对于一次函数y=﹣2x+4,下列结论错误的是()A.函数值随自变量的增大而减小B.函数的图象不经过第三象限C.函数的图象向下平移4个单位长度得y=﹣2x的图象D.函数的图象与x轴的交点坐标是(0,4)考点:一次函数的性质;一次函数图象与几何变换。专题:探究型。分析:分别根据一次函数的性质及函数图象平移的法则进行解答即可.解答:解:A.∵一次函数y=﹣2x+4中k=﹣2<0,∴函数值随x的增大而减小,故本选项正确;5B.∵一次函数y=﹣2x+4中k=﹣2<0,b=4>0,∴此函数的图象经过一.二.四象限,不经过第三象限,故本选项正确;C.由“上加下减”的原则可知,函数的图象向下平移4个单位长度得y=﹣2x的图象,故本选项正确;D.∵令y=0,则x=2,∴函数的图象与x轴的交点坐标是(2,0),故本选项错误.故选D.点评:本题考查的是一次函数的性质及一次函数的图象与几何变换,熟知一次函数的性质及函数图象平移的法则是解答此题的关键.11.(2012长沙)小明骑自行车上学,开始以正常速度匀速行驶,但行至中途时,自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了速度继续匀速行驶,下面是行驶路程s(m)关于时间t(min)的函数图象,那么符合小明行驶情况的大致图象是()A.B.C.D.解答:解:小明骑自行车上学,开始以正常速度匀速行驶,正常匀速行驶的路程、时间图象是一条过原点O的斜线,修车时自行车没有运动,所以修车时的路程保持不变是一条平行于横坐标的水平线,修车后为了赶时间,他比修车前加快了速度继续匀速行驶,此时的路程、时间图象仍是一条斜线,只是斜线的倾角变大.因此选项A、B、D都不符合要求.故选C.二.填空题1.(2012•丽水)甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.图中l甲、l乙分别表示甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分)变化的函数图象,则每分钟乙比甲多行驶千米.考点:函数的图象。分析:根据函数的图形可以得到甲用了30分钟行驶了12千米,乙用12分钟行驶了12千米,分别算出速度即可求得结果.解答:解:∵据函数图形知:甲用了30分钟行驶了12千米,乙用(18-6)分钟行驶了12千米,6∴甲每分钟行驶12÷30=千米,乙每分钟行驶12÷12=1千米,∴每分钟乙比甲多行驶1-=千米,故答案为:.点评:本题考查了函数的图象,解题的关键是从函数图象中整理出进一步解题的信息,同时考查了同学们的读图能力.2.(2012上海)已知正比例函数y=kx(k≠0),点(2,﹣3)在函数上,则y随x的增大而(增大或减小).考点:正比例函数的性质;待定系数法求一次函数解析式。解答:解:∵点(2,﹣3)在正比例函数y=kx(k≠0)上,∴2k=﹣3,解得:k=﹣,∴正比例函数解析式是:y=﹣x,∵k=﹣<0,∴y随x的增大而减小,故答案为:减小.3.(2012无锡)函数y=1+中自变量x的取值范围是x≥2.考点:函数自变量的取值范围。专题:常规题型。分析:根据被开方数大于等于0列式计算即可得解.解答:解:根据题意得,2x﹣4≥0,解得x≥2.故答案为:x≥2.点评:考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.三.解答题1.(2012临沂)小明家今年种植的“红灯”樱桃喜获丰收,采摘上市20天全部销售完,小明对销售情况进行跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图1所示,樱桃价格z(单位:元/千克)与上市时间x(单位:天)的函数关系式如图2所示.7(1)观察图象,直接写出日销售量的最大值;(2)求小明家樱桃的日销售量y与上市时间x的函数解析式;(3)试比较第10天与第12天的销售金额哪天多?考点:一次函数的应用。解答:解:(1)由图象得:120千克,(2)当0≤x≤12时,设日销售量与上市的时间的函数解析式为y=kx,∵点(12,120)在y=kx的图象,∴k=10,∴函数解析式为y=10x,当12<x≤20,设日销售量与上市时间的函数解析式为y=kx+b,∵点(12,120),(20,0)在y=kx+b的图象上,∴,∴∴函数解析式为y=﹣15x+300,∴小明家樱桃的日销售量y与上市时间x的函数解析式为:y=;(3)∵第10天和第12天在第5天和第15天之间,∴当5<x≤15时,设樱桃价格与上市时间的函数解析式为z=kx+b,∵点(5,32),(15,12)在z=kx+b的图象上,∴,∴,∴函数解析式为z=﹣2x+42,当x=10时,y=10×10=100,z=﹣2×10+42=22,销售金额为:100×22=2200(元),当x=12时,y=120,z=﹣2×12+42=18,销售金额为:120×18=2160(元),∵2200>2160,∴第10天的销售金额多.82.(2012菏泽)(1)如图,一次函数2y=23x的图象分别与x轴、y轴交于点A、B,以线段AB为边在第一象限内作等腰Rt△ABC,∠BAC=90°.求过B、C两点直线的解析式.考点:一次函数综合题。解答:解:一次函数2y=23x中,令x=0得:y=2;令y=0,解得x=3.则A的坐标是(0,2),C的坐标是(3,0).作CD⊥x轴于点D.∵∠BAC=90°,∴∠OAB+∠CAD=90°,又∵∠CAD+∠ACD=90°,∴∠ACD=∠BAO又∵AB=AC,∠BOA=∠CDA=90°∴△ABO≌△CAD,∴AD=OB=2,CD=OA=3,OD=OA+AD=5.则C的坐标是(5,3).设BC的解析式是y=kx+b,根据题意得:,解得:.则BC的解析式是:125yx.3.(2012义乌市)周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.(1)求小明骑车的速度和在甲地游玩的时间;(2)小明从家出发多少小时后被妈妈追上?此时离家多远?(3)若妈妈比小明早10分钟到达乙地,求从家到乙地的路程.考点:一次函数的应用。解答:解:(1)小明骑车速度:9在甲地游玩的时间是1﹣0.5=0.5(h).(2)妈妈驾车速度:20×3=60(km/h)设直线BC解析式为y=20x+b1,把点B(1,10)代入得b1=﹣10∴y=20x﹣10设直线DE解析式为y=60x+b2,把点D(,0)代入得b2=﹣80∴y=60x﹣80…(5分)∴解得∴交点F(1.75,25).答:小明出发1.75小时(105分钟)被妈妈追上,此时离家25km.(3)方法一:设从家到乙地

1 / 19
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功