一次函数应用题专题训练1.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系.(1)根据图中信息,求线段AB所在直线的函数解析式和甲乙两地之间的距离;(2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t时,求t的值;(3)若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中y关于x的函数的大致图像.(温馨提示:请画在答题卷相对应的图上)2.春节期间,某客运站旅客流量不断增大,旅客往往需要长时间排队等候购票.经调查发现,每天开始售票时,约有400人排队购票,同时又有新的旅客不断进入售票厅排队等候购票.售票时售票厅每分钟新增购票人数4人,每分钟每个售票窗口出售的票数3张.某一天售票厅排队等候购票的人数y(人)与售票时间x(分钟)的关系如图所示,已知售票的前a分钟只开放了两个售票窗口(规定每人只购一张票).(1)求a的值.(2)求售票到第60分钟时,售票听排队等候购票的旅客人数.(3)若要在开始售票后半小时内让所有的排队的旅客都能购到票,以便后来到站的旅客随到随购,至少需要同时开放几个售票窗口?3.在一条直线上依次有A、B、C三个港口,甲、乙两船同时分别从A、B港口出发,沿直线匀速驶向C港,最终达到C港.设甲、乙两船行驶x(h)后,与B港的距离分别为、(km),、与x的函数关系如图所示.(1)填空:A、C两港口间的距离为km,;(2)求图中点P的坐标,并解释该点坐标所表示的实际意义;(3)若两船的距离不超过10km时能够相互望见,求甲、乙两船可以相互望见时x的取值范围.4.一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:4.销售方式粗加工后销售精加工后销售每吨获利(元)10002000已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.⑴如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?⑵如果先进行精加工,然后进行粗加工.①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多可获得多少利润?此时如何分配加工时间?5.某物流公司的甲、乙两辆货车分别从A、B两地同时相向而行,并以各自的速度匀速行驶,途径配货站C,甲车先到达C地,并在C地用1小时配货,然后按原速度开往B地,乙车从B地直达A地,图16是甲、乙两车间的距离(千米)与乙车出发(时)的函数的部分图像(1)A、B两地的距离是千米,甲车出发小时到达C地;(2)求乙车出发2小时后直至到达A地的过程中,与的函数关系式及的取值范围,并在图16中补全函数图像;(3)乙车出发多长时间,两车相距150千米6.张师傅驾车运送荔枝到某地出售,汽车出发前油箱有油50升,行驶若干小时后,途中在加油站加油若干升,油箱中剩余油量(升)与行驶时间(小时)之间的关系如图所示.请根据图象回答下列问题:(1)汽车行驶小时后加油,中途加油升;(2)求加油前油箱剩余油量与行驶时间的函数关系式;(3)已知加油前、后汽车都以70千米/小时匀速行驶,如果加油站距目的地210千米,要到达目的地,问油箱中的油是否够用?请说明理由.7.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?8.自实施家电以旧换新政策,消费者在购买政策限定的新家电时,每台新家电用一台同类的旧家电换取一定数额的补贴.为确保商家利润不受损失,补贴部分由政府提供,其中三种家电的补贴方式如下表:补贴额度新家电销售价格的10%说明:电视补贴的金额最多不超过400元/台;洗衣机补贴的金额最多不超过250元/台;冰箱补贴的金额最多不超过300元/台.为此,某商场家电部准备购进电视、洗衣机、冰箱共100台,这批家电的进价和售价如下表:家电名称进价(元/台)售价(元/台)电视39004300洗衣机15001800冰箱20002400设购进的电视机和洗衣机数量均为x台,这100台家电政府需要补贴y元,商场所获利润w元(利润=售价-进价)(1)请分别求出y与x和w与x的函数表达式;(2)若商场决定购进每种家电不少于30台,则有几种进货方案?若商场想获得最大利润,应该怎样安排进货?若这100台家电全部售出,政府需要补贴多少元钱?【答案】1.(1)线段AB所在直线的函数解析式为:y=kx+b,将(1.5,70)、(2,0)代入得:,解得:,所以线段AB所在直线的函数解析式为:y=-140x+280,当x=0时,y=280,所以甲乙两地之间的距离280千米.(2)设快车的速度为m千米/时,慢车的速度为n千米/时,由题意得:,解得:,所以快车的速度为80千米/时,所以.(3)如图所示.2.(1)由图象知,,所以;(2)设BC的解析式为,则把(40,320)和(104,0)代入,得,解得,因此,当时,,即售票到第60分钟时,售票厅排队等候购票的旅客有220人;(3)设同时开放个窗口,则由题知,解得,因为为整数,所以,即至少需要同时开放6个售票窗口。3.解:(1)120,;(2)由点(3,90)求得,.当>0.5时,由点(0.5,0),(2,90)求得,.当时,,解得,.此时.所以点P的坐标为(1,30)该点坐标的意义为:两船出发1h后,甲船追上乙船,此时两船离B港的距离为30km.求点P的坐标的另一种方法:由图可得,甲的速度为(km/h),乙的速度为(km/h).则甲追上乙所用的时间为(h).此时乙船行驶的路程为(km).所以点P的坐标为(1,30).(3)①当≤0.5时,由点(0,30),(0.5,0)求得,.依题意,≤10.解得,≥.不合题意.②当0.5<≤1时,依题意,≤10.解得,≥.所以≤≤1.③当>1时,依题意,≤10.解得,≤.所以1<≤.综上所述,当≤≤时,甲、乙两船可以相互望见.4.(2010四川内江)【答案】解:⑴设应安排x天进行精加工,y天进行粗加工,1分根据题意得:3分解得答:应安排4天进行精加工,8天进行粗加工.4分⑵①精加工m吨,则粗加工(140-m)吨,根据题意得:W=2000m+1000(140-m)=1000m+140000.6分②∵要求在不超过10天的时间内将所有蔬菜加工完,∴+≤10解得m≤5.8分m5140-m15∴0<m≤5.又∵在一次函数W=1000m+140000中,k=1000>0,∴W随m的增大而增大,∴当m=5时,Wmax=1000×5+140000=145000.9分∴精加工天数为5÷5=1,粗加工天数为(140-5)÷15=9.∴安排1天进行精加工,9天进行粗加工,可以获得最多利润为145000元.10分.5.【答案】6.【答案】解:(1)3,31.(2)设与的函数关系式是,根据题意,得:解得:因此,加油前油箱剩油量与行驶时间的函数关系式是:.(3)由图可知汽车每小时用油(升),所以汽车要准备油(升),因为45升36升,所以油箱中的油够用.7.【答案】解:(1)设甲车租x辆,则乙车租(10-x)辆,根据题意,得解之得∵x是整数∴x=4、5、6、7∴所有可行的租车方案共有四种:①甲车4辆、乙车6辆;②甲车5辆、乙车5辆;③甲车6辆、乙车4辆;④甲车7辆、乙车3辆.(2)设租车的总费用为y元,则y=2000x+1800(10-x),即y=200x+18000∵k=200>0,∴y随x的增大而增大∵x=4、5、6、7∴x=4时,y有最小值为18800元,即租用甲车4辆、乙车6辆,费用最省.8【答案】