高中数学必修二-点线面的关系-线面平行-面面平行--线面垂直-面面垂直-综合提高-冲刺辅导

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1空间点、直线、平面之间的位置关系1平面含义:平面是无限延展的2三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.符号表示为A∈LB∈L=LαA∈αB∈α公理1作用:判断直线是否在平面内.(2)公理2:过不在一条直线上的三点,有且只有一个平面。符号表示为:A、B、C三点不共线=有且只有一个平面α,使A∈α、B∈α、C∈α。公理2作用:确定一个平面的依据。(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。符号表示为:P∈α∩β=α∩β=L,且P∈L公理3作用:判定两个平面是否相交的依据.空间中直线与直线之间的位置关系1空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点。2公理4:平行于同一条直线的两条直线互相平行。符号表示为:设a、b、c是三条直线a∥bc∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。公理4作用:判断空间两条直线平行的依据。3等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.4注意点:①a'与b'所成的角的大小只由a、b的相互位置来确定,与O的选择无关为了简便点O一般取在两直线中的一条上;②两条异面直线所成的角θ∈(0,);③当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b;④两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。空间中直线与平面、平面与平面之间的位置关系1、直线与平面有三种位置关系:(1)直线在平面内——有无数个公共点(2)直线与平面相交——有且只有一个公共点(3)直线在平面平行——没有公共点指出:直线与平面相交或平行的情况统称为直线在平面外,可用aα来表示LA·αC·B·A·αP·αLβ共面直线=a∥c22①异面直线定义:不同在任何一个平面内的两条直线②异面直线性质:既不平行,又不相交。③平面内一点与平面外一点的连线,与此平面内不经过该点的直线是异面直线如图1:,A,,aBBa,那么直线AB与直线a是异面直线.注意事项:1.定义中的“任何”两字很重要,不能随便改成“不同在某一个平面内”.2.反证法是证明两条直线异面的常用方法.④异面直线所成角:直线a、b是异面直线,经过空间任意一点O,分别引直线a’∥a,b’∥b,则把直线a’和b’所成的锐角(或直角)叫做异面直线a和b所成的角。两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。说明:(1)判定空间直线是异面直线方法:①根据异面直线的定义;②异面直线的判定定理(2)在异面直线所成角定义中,空间一点O是任取的,而和点O的位置无关。②求异面直线所成角步骤:A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。B、证明作出的角即为所求角C、利用三角形来求角空间角问题(1)直线与直线所成的角①两平行直线所成的角:规定为0。②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。③两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线ba,,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。(2)直线和平面所成的角①平面的平行线与平面所成的角:规定为0。②平面的垂线与平面所成的角:规定为90。③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角‘叫做这条直线和这个平面所成的角。求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”。在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,在解题时,注意挖掘题设中两个主要信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与a3已知面垂直,由面面垂直性质易得垂线。(3)二面角和二面角的平面角①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角。③直二面角:平面角是直角的二面角叫直二面角。两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角④求二面角的方法定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角一、选择题1、线段AB在平面内,则直线AB与平面的位置关系是()A、ABB、ABC、由线段AB的长短而定D、以上都不对2、下列说法正确的是()A、三点确定一个平面B、四边形一定是平面图形C、梯形一定是平面图形D、平面和平面有不同在一条直线上的三个交点3、垂直于同一条直线的两条直线一定()A、平行B、相交C、异面D、以上都有可能4、若直线l∥平面,直线a,则l与a的位置关系是()A、l∥aB、l与a异面C、l与a相交D、l与a没有公共点5、a,b是两条异面直线,()A.若P为不在a、b上的一点,则过P点有且只有一个平面与a,b都平行B.过直线a且垂直于直线b的平面有且只有一个C.若P为不在a、b上的一点,则过P点有且只有一条直线与a,b都平行D.若P为不在a、b上的一点,则过P点有且只有一条直线与a,b都垂直6.a、b是异面直线,下面四个命题:①过a至少有一个平面平行于b;②过a至少有一个平面垂直于b;③至少有一条直线与a、b都垂直;④至少有一个平面分别与a、b都平行,其中正确命题的个数是()A.0B.1C.2D.37.以下命题正确的是()A.两个平面可以只有一个交点4B.一条直线与一个平面最多有一个公共点C.两个平面有一个公共点,它们可能相交D.两个平面有三个公共点,它们一定重合8.下面四个说法中,正确的个数为()(1)如果两个平面有三个公共点,那么这两个平面重合(2)两条直线可以确定一个平面(3)若M∈α,M∈β,α∩β=l,则M∈l(4)空间中,相交于同一点的三直线在同一平面内A.1B.2C.3D.49.已知平面α内有无数条直线都与平面β平行,那么()A.α∥βB.α与β相交C.α与β重合D.α∥β或α与β相交10.两等角的一组对应边平行,则()A.另一组对应边平行B.另一组对应边不平行C.另一组对应边也不可能垂直D.以上都不对11.平面α∥平面β,AB、CD是夹在α和β间的两条线段,E、F分别为AB、CD的中点,则EF与α的关系是()A.平行B.相交C.垂直D.不能确定12.经过平面外两点与这个平面平行的平面()A.只有一个B.至少有一个C.可能没有D.有无数个13.如图,在棱长为3的正方体ABCD-A1B1C1D1中,M、N分别是棱A1B1、A1D1的中点,则点B到平面AMN的距离是()A.29B.3C.556D.2二、填空题1.已知直线a∥b,a、b平面α,直线c与a异面,且b与c不相交,则c与α的位置关系是_______.2.已知直线m,n,平面,,给出下列命题:①若则,,mm;②若//,//,//则mm;③若则,//,mm;④若异面直线m,n互相垂直,则存在过m的平面与n垂直.其中正确的命题的题号为3.设lmn、、是三条不同的直线,、、是三个不同的平面,下面有四个命题:①,ll若∥∥,则∥;②,lnmnlm若∥∥,则∥;③,ll若∥,则;④,,lm若,.lm则其中假命题的题号为4.下列四个命题:①过直线外一点,有且只有一条直线与该直线平行②过直线外一点,有且只有一个平面与该直线平行ADBAD1C1B1A1MN5③过平面外一点,有且只有一条直线与该平面平行④过平面外一点,有无数多条直线与该平面平行其中真命题为_____________(写出序号即可)5.如图,在四棱柱ABCD---A1B1C1D1中,P是A1C1上的动点,E为CD上的动点,四边形ABCD满足___________时,体积AEBPV恒为定值(写上你认为正确的一个答案即可)三、解答题1、一块边长为10cm的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,试建立容器的容积V与x的函数关系式,并求出函数的定义域2.如图,正三棱柱ABC—A1B1C1的底面边长的3,侧棱AA1=,233D是CB延长线上一点,且BD=BC.(Ⅰ)求证:直线BC1//平面AB1D;(Ⅱ)求二面角B1—AD—B的大小;(Ⅲ)求三棱锥C1—ABB1的体积.x105OFEDBACABDCPEA1D1C1B163.如图,已知四棱锥S-ABCD的底面ABCD是正方形,SA⊥底面ABCD,E是SC上的一点.(1)求证:平面EBD⊥平面SAC;(2)设SA=4,AB=2,求点A到平面SBD的距离;4、如图所示,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,M、N分别是AB、PC的中点,PA=AD=a.(1)求证:MN∥平面PAD;(2)求证:平面PMC⊥平面PCD.ABCDES75、四棱锥SABCD中,底面ABCD为平行四边形,侧面SBC底面ABCD.已知45ABC∠,2AB,22BC,3SASB.(Ⅰ)证明SABC;(Ⅱ)求直线SD与平面SAB所成角的大小.6、如图,已知直二面角PQ,APQ,B,C,CACB,45BAP,直线CA和平面所成的角为30.(I)证明BCPQ⊥;(II)求二面角BACP的大小.ABCQPDBCAS87、如图,正方体ABCD-A1B1C1D1的棱长为1,E是A1B1的中点,证明:①E到平面ABC1D1的距离是21;②直线BC与平面ABC1D1所成角等于45;③BE与CD1所成的角为1010arcsin8.在正三棱柱ABC—A1B1C1中,底面边长为a,D为BC为中点,M在BB1上,且BM=13B1M,又CM⊥AC1;(1)求证:CM⊥C1D;(2)求AA1的长.9.如图,在四棱锥P-ABCD中,底面是矩形且AD=2,AB=PA=2,PA⊥底面ABCD,E是AD的中点,F在PC上.DCBAED1A1C1B19(1)求F在何处时,EF⊥平面PBC;(2)在(1)的条件下,EF是不是PC与AD的公垂线段.若是,求出公垂线段的长度;若不是,说明理由;(3)在(1)的条件下,求直线BD与平面BEF所成的角.10.如图,四棱锥S—ABCD的底面是边长为1的正方形,SD垂直于底面ABCD,SB=3.(1)求证BCSC;(2)求面ASD与面BSC所成二面角的大小;(3)设棱SA的中点为M,求异面直线DM与SB所成角的大小.11.如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=2,AF=1,M是线段EF的中点.(1)求证AM//平面BDE;(2)求二面角ADFB的大小;10(3)试在线段AC上确定一点P,使得PF与BC所成的角是60.

1 / 10
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功