微专题不等式中多元变量最值的处理方法2例题赏析例3已知,,(0,)xyz??,且2221xyz++=,则3xyyz+的最大值是.解:设22221(1)xtytyz=++-+,其中01t,则22221(1)221xtytyztxytyz=++-++-≥,令23121tt=-,解得910t=,所以222291912122(3)1010101010xyyzxyyzxyyz=++++=+≥,得1032xyyz+≤,当且仅当22222229101101xyzyxyzìïï=ïïïïïï=íïïïï++=ïïïïî,即351022510xyzìïï=ïïïïïïï=íïïïïïï=ïïïî时取“=”.练习3已知,,abc均是正数,则2222()52abcbcac++++的最小值是.答案:4例4已知22425xxyy-+=,求223xy+的取值范围.解法1:令2223xyR+=,则cos3sinRxyRqqìïï=ïïíïï=ïïî,因为22425xxyy-+=,所以22222425cossincossin33RRRqqqq=-+,整理得215050,3032cos(2)73Rpq轾犏=?犏臌++.解法2:当0x=时,22325xy+=;当0x¹时,记2222222225[3()]25(3)344()yxyxPxyyyxxyyxx++=+==-+-+,令ytx=,则22225(3)1252544ttPtttt+-==+?-+-+再令1tu-=,得225254uPuu=+?++,0u=时,25P=,0u时,25252525253044121Puuuu=++=++?≤,当0u时,252550252525434121Puuuu=++=++-?≥,综上,223xy+的取值范围是50,303轾犏犏臌.练习4已知,xy为正实数,且22241xxyy++=,则xy+的取值范围是.答案:1(,1)2强化练习:1.已知0,0ab,且2223abab+=+,则22ab+的最大值是.答案:18627+2.已知实数,xy满足22221xyxy+-=,则2234xy+的取值范围是.答案:412[,]353.已知实数,xy满足226xxyy++=,则22xy+的取值范围是.答案:[4,12]4.已知实数,xy满足22221234,xxyyzxy-+==+,则z的最大值与最小值的和为.答案:15.已知220,(2)1xxy+-=≥,求22223235xxyyWxy++=+的最值.答案:maxmin6,5WW==