Re nable Spline Functions and Hermite Interpolatio

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

RenableSplineFuntionsandHermiteInterpolationTimN.T.GoodmanAbstrat.Weonsiderr-vetorsofsplinefuntionswithompatsup-portandstableintegertranslateswhihsatisfyarenementequationwithanitenumberofterms.Itisseenthatforr=1or2,thehoieofsuhvetorsisverylimited.Howeverforr3thereissuÆientexibility,evenforsimpleuniformknots,toallowthesatisfationoffurtherusefulproperties.Mentionismadeofbiorthogonalityandorthogonalityprop-erties.Moreoveritisshownthatforeahr3suhvetorsofsplinesanbeonstrutedwhiharefundamentalforr-Hermiteinterpolationandhavearbitrarilyhighsmoothness.x1.IntrodutionTaker1andlet1;:::;rbereal-valuedfuntionsonIRandwrite=(1;:::;r)T.Wesaythatisrenableifitsatisestherenementequation(x)=1Xj=1Aj(2xj);x2IR;(1)whereAj;j2ZZ,arerrmatries.Muhworkhasbeendoneinstudyingonditionsonthematries(Aj)thatwillensurethat(1)hasauniquesolutionsatisfyingertainproperties,e.g.smoothness,polynomialreprodutionororthogonality.Thesolutionisthendenedimpliitlyfromtherenementequation.Weheretakethedierentapproahofstudyingonditionsonsplinefuntions,i.e.pieewisepolynomials,whihensurethattheysatisfyarenementequationofform(1).Inthisaseweknowexpliitlythesmoothnessandpolynomialreprodutionof,butthevaluesofthematries(Aj)willbedenedimpliitlyfrom(1)andwillnotdiretlyonernus.Weshallkeepmatterssimple.Heneweassumethatonlyanitenumberofthematries(Aj)in(1)arenon-zero.Moreoverwesupposethat1;:::;rhaveompatsupportandtheirintegertranslatesformaRieszbasis,i.e.forsomeonstantsA;B0,whenf=rXi=11Xj=1aiji(:j);foranyaij2IR;i=1;:::;r;j2ZZ;2T.N.T.GoodmanwehaveArXi=11Xj=1a2ijZ11f2BrXi=11Xj=1a2ij:(2)Forsimpliityweshallsayisstablewhentheaboveondition(2)holds.Intherenementequation(1)itwouldbepossibletoreplaethedilationfator2byanyintegerm2,butforsimpliityweonsideronlym=2.InSetion2weshallreviewsomegeneralresults,whihshowinpartiularthatforr=1and2thereislittleexibilityinthehoieofrenablesplinefuntionsasabove.However,forr3thereisinontrastagreatdealofexibility,andthisanbeusedtoonstrutrenablesplinefuntionswithpropertieswhihareusefulforthetwomainappliationsofrenablefuntions.Therstoftheseonernswavelets,forwhihitisusualtorequiresomeorthogonalitypropertiesoftherenablefuntions.AttheendofSetion2wereallbrieytheonstrutionforr=3ofrenablesplinefuntionswhiharebiorthogonaltoB-splineswithsimpleuniformknots.TheB-splinesherehavearbitrarydegreen1andsimpleknotsat13ZZ,whiletheirdualfuntionshavethesamedegreeandsimpleknotsin14ZZ.Wealsomentiontheonstrutionoforthogonalrenablesplinefuntions,againforr=3,arbitrarydegreen1andsimpleknotsin14ZZ,thedetailsofwhihwillappearinalaterpaper.Theothermainappliationofrenablefuntionsonernssubdivisionshemes.InSetion3,whihisallnewwork,weonstrutrenablesplinefuntionswhiharefundamentalforr-Hermiteinterpolation,i.e.wehave(j1)i(k)=ÆijÆko;i;j=1;:::;r;k2ZZ:(3)Weshowthatforeahr3,itispossibletoonstrutsuhfundamentalrenablesplinesforarbitrarydegreenr+1andsimpleuniformknots,thusgivingsmoothnessCn1.ThesegiverisetoHermiteinterpolatorysubdivisionshemes,i.e.shemesinwhihwearegiventhevaluesofafuntionanditsderivativesuptoorderr1attheintegersandthesubdivisionsuessivelyllsinthevaluesofthefuntionanditsderivativesuptoorderr1atthedyadipoints2jk;k2ZZ;j=1;2;:::,oftheuniquerenablefuntionwhihinterpolatesthedata.Asfarasweknow,thesearetheonlyinterpolatorysubdivisionshemeswhih,forr2,areknowntogivearbitrarilyhighsmoothnessoftheinterpolatingfuntions.x2.SomeGeneralitiesFortheaser=1ofasinglerenablesplinefuntion,itwasshownbyLawton,LeeandShenthatthehoieisveryrestritedindeed.Theorem1.[10℄Afuntionisastablerenablesplinefuntion(ofompatsupportsatisfyingarenementequationwithanitenumberofterms)ifandonlyifisaonstantmultipleofaB-splinewithsimpleknotsattheintegers.Beforeanalysingtheaser=2,weonsidersomegeneralresults.Wesayavetor=(1;:::;r)TgeneratesaspaeSifSomprisesallniteRenableSplines3linearombinationsofintegertranslatesofelementsof.Thus1;:::;rlieinSifandonlyiffor=(1;:::;r)T,=rXi=11Xk=1Ak(:k);(4)foraniteolletion(Ak)ofrrmatries.Equation(4)anbeexpressedmoreneatlybyintroduingtheFouriertransform^f(u):=Z11eiuxf(x)dx;u2IR:ThentakingFouriertransformsof(4)gives^(u)=A(eiu)^(u);u2IR;(5)whereAdenotestherrmatrixofLaurentpolynomialsA(z):=1Xk=1Akzk;z=eiu;u2IR:(6)WeshallsayarrmatrixAofLaurentpolynomials,asin(6),isinvertibleifithasaninverseA1whihisalsoamatrixofLaurentpolynomials.ItiseasilyseenthatAisinvertibleifandonlyifitsdeterminantdetAisanon-trivialmonomial.TheFouriertransformalsogivesanelegantonditionforthestabilityof.ItisshownbyJiaandMihelli[9℄that=(1;:::;r)TisstableifandonlyifforeahuinIR,thereareintegersk1;:::;krwithdet[^i(u+2kj)℄ri;j=16=0:(7)Fromtheabovedisussionweaneasilydeduethefollowing.Lemma2.SupposeisstableandgeneratesS.ThenisstableandalsogeneratesSifandonlyif^(u)=A(eiu)^(u);u2IR;foraninvertiblematrixA.WeshallallandequivalentiftheysatisfytheonditionsofLemma2.Clearlyifandareequivalent,thentheyhavethesamenumberofompo-nents.NowsupposethatisrenableandgeneratesS.ThenanyelementofSisanitelinearombinationofintegertranslatesoftheelemen

1 / 15
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功