成都理工大学马英杰核数据处理第一章预备知识成都理工大学核自学院成都理工大学马英杰前言—地位、作用和任务随着测量工作的深入和技术的进步,对获取的大量数据的处理要求愈来愈高,特别是核辐射测量,实验数据的统计性、随机性十分突出,为了从大量实验数据中获得充分可靠的信息,并总结出一定的规律,就必须对纷繁的大量的实验数据进行必要的分析、处理。该课程是“核技术”专业的一门重要专业课,该课程与后续教学环节“程序设计实习”一起,构成了学生计算机核数据处理能力培养的一个重要教学环节。成都理工大学马英杰前言—目的、要求课程目的:利用计算机技术,对放射性(核辐射)测量数据进行处理、分析、成图成像和解释。课程要求:掌握各种数据处理方法的基本思路及原理;掌握各种数据处理方法的使用条件及效果;对一些方法能在计算机上编程实现。成都理工大学马英杰前言—安排总学时:32学时理论:32学时考核平时成绩:占20%(点名+作业)考试成绩:占80%联系方式办公室:学院楼204电子邮件:myj@cdut.edu.cn电话:13982148867成都理工大学马英杰前言—参考书核物理实验数据处理,吴学超,冯正水编著,原子能出版社Υ能谱数据处理,庞巨丰著,陕西科学技术出版社误差与数据处理,刘智敏编著,原子能出版社铀矿物化探数据处理方法,张锦由编,原子能出版社C语言数值算法程序大全,W.H.Press等著,傅祖芸等译,电子工业出版社《物探与化探》《物化探计算技术》《核技术》等《GeophysicalResearchLetters》《X-raySpectrum》《Geophysics》etal.其他成都理工大学马英杰预备知识内容核辐射测量数据放射性测量中的统计性误差样本统计量及分类成都理工大学马英杰预备知识——核辐射测量数据核辐射测量仪器的组成核辐射探测器前置电路线性脉冲放大器积分甄别器率计电路计数器脉冲幅度分析器辅助电路计数器多道脉冲幅度分析器接口电路计算机系统应用软件高压电源低压电源(a)(b)(c)(a)总量测量仪器(b)能谱测量仪器(c)全谱测量仪器总量测量仪成都理工大学马英杰预备知识——核辐射测量数据核辐射测量所得的数据总量测量仪器所测得的数据:一个数据单个计数值经刻度和计算所得的活度、剂量、浓度等量值所需的数据处理:预处理(数据的检验、选择、转换等)统计分析成图成像成都理工大学马英杰预备知识——核辐射测量数据核辐射测量仪器的组成核辐射探测器前置电路线性脉冲放大器积分甄别器率计电路计数器脉冲幅度分析器辅助电路计数器多道脉冲幅度分析器接口电路计算机系统应用软件高压电源低压电源(a)(b)(c)(a)总量测量仪器(b)能谱测量仪器(c)全谱测量仪器能谱测量仪成都理工大学马英杰预备知识——核辐射测量数据核辐射测量所得的数据能谱测量仪器所测得的数据:几个数据几个计数值经刻度和计算所得的活度、含量、浓度等量值所需的数据处理:预处理(数据的检验、选择、转换等)统计分析成图成像成都理工大学马英杰预备知识——核辐射测量数据核辐射测量仪器的组成核辐射探测器前置电路线性脉冲放大器积分甄别器率计电路计数器脉冲幅度分析器辅助电路计数器多道脉冲幅度分析器接口电路计算机系统应用软件高压电源低压电源(a)(b)(c)(a)总量测量仪器(b)能谱测量仪器(c)全谱测量仪器全谱测量仪成都理工大学马英杰预备知识——核辐射测量数据核辐射测量所得的数据全谱测量仪器(多道能谱仪)所测得的数据:一条谱线几百或几千个计数值(即一个数组)例如:intdata[1024]所需的数据处理:谱数据处理-多个累计计数(面积)、含量、活度等预处理(数据的检验、选择、转换等)统计分析成图成像成都理工大学马英杰预备知识——核辐射测量数据数据的特性1.随机性——主要包括两个方面:1)被测对象是随机的产生射线的事件不能实现预言,也不能再现,但可以确定它出现的概率。2)测量过程中也存在各种随机因素的影响测量过程中,由于测量条件的随机变化,或测量仪器和方法不够精密等原因,也会带来随机误差。随机性是固有特性。数据的随机性决定了数据处理方法—建立在概率统计基础上。成都理工大学马英杰预备知识——核辐射测量数据数据的特性2.局限性由于被测对象的隐秘性和复杂性,以及方法的能力有限,致使获得的数据具有一定的局限性,不能反映被测对象的全体。3.混合型数据的混合性是指数据来自多个对象的特性。例如,谱数据中的每道计数值(即每种能量的射线统计个数),可能来自不同的元(核)素。4.空间性成都理工大学马英杰预备知识——核辐射测量数据数据的分类1.测量型数据测量型数据指连续性的观测值,它们之间不仅能比较大小,而且能定量地表示其间的差异。例如各种仪器的观测值、化学元素的分析值等2.计数型数据计数型数据指以不连续的个数为计数特征的数据。例如核素的辐射粒子数、异常点数等。成都理工大学马英杰预备知识——核辐射测量数据数据的分类3.级序型数据级序型数据又称等级型数据,是离散型数据的一种。这类数据是按等级划分的具有等级顺序的数据,例如异常等级数、场晕等级数等数据。4.状态型数据状态型数据指用逻辑数字“-1,0,+1”表示事物状态的数据。包括二态型数据和三态型数据。通常二态型数据用“0,1”表示“无,有”。例如无异常和有异常。成都理工大学马英杰预备知识——核辐射测量数据数据的分类5.名义型数据这类数据没有量的概念,只起一种代码作用。它常用于描述不包含相对重要性或相对变化的对象。如描述异常性质等。如,用名义型数据描述放射性异常性质,可以用“1”、“2”、“3”代表“铀异常”、“钍异常”、“钾异常”进行处理。这里“2”不是两个“1”的和,也不意味着“2”比“1”大,它们只是区分研究对象的某种标志的符号。成都理工大学马英杰预备知识内容核辐射测量数据放射性测量中的统计性误差样本统计量及分类成都理工大学马英杰预备知识——放射性测量中的统计性核衰变进行核测量时,条件虽然相同,但测量结果不完全相同,甚至相差很大,这是由于“核衰变”本身具有统计特性。成都理工大学马英杰预备知识——放射性测量中的统计性顺序s-1顺序s-1顺序s-1顺序s-1顺序s-112215414613815232214226218253323643563183244242444642841532544526558566226646466386473272475674876822834866818859729049869289110230350370290111331351071291412632452372492213433353473393714534354474894515635055375195416336156276396517103775727729731843855847829831953935947929932054066018041004成都理工大学马英杰预备知识——放射性测量中的统计性但数值虽有差异,多数均在平均值左右出现对原始数据的简单整理单位时间内的计数(n)012345计数为n的出现次数p(n)31118221913计数为n的出现概率P(n)0.030.110.180.220.190.13单位时间内的计数(n)678910计数为n的出现次数p(n)74201计数为n的出现概率P(n)0.070.040.020.000.01成都理工大学马英杰预备知识——放射性测量中的统计性核衰变的规律这个平均值,又称数学期望值统计误差:各次测量值围绕平均值涨落的误差衰变规律:n个原子核,t时间内,任一原子核发生衰变的概率为:不发生的概率为:tep1peqt1成都理工大学马英杰预备知识——放射性测量中的统计性核衰变的统计规律——二项分布k次试验,每次试验有两种可能——发生或不发生,所以满足二项分布。则t时间内,n个原子核发生衰变的概率满足二项分布规律。k,p是决定分布的两个参数:数学期望E为:kp;方差D为:kpq。nknqpnknknP)!(!!)(成都理工大学马英杰预备知识——放射性测量中的统计性核衰变的统计规律——泊松分布当(通常)k很大,而核衰变的概率p很小,满足泊松分布。决定分布的只有一个参数:λ;数学期望为:λ;方差为:λ。当λ值小时,曲线左右不对称,当λ增大时分布趋于对称。均方差与平均值的关系为:nkpennPknlim!)(nn2成都理工大学马英杰预备知识——放射性测量中的统计性核衰变的统计规律——高斯分布当λ值较小(λ10)时,满足泊松分布,当λ值较大(λ16)时,则满足高斯分布。决定分布的有两个参数:μ,σ;数学期望为:μ(分布的位置);方差为:σ(分布的宽窄)。均方差与数学期望与平均值的关系为:)(2121)(222/)(21/)(21xfeennpxnnnnn2成都理工大学马英杰预备知识——放射性测量中的统计性核衰变的统计规律——高斯分布例:在时间t内,放射源放出粒子的平均值100。试求:在时间t内放出108个粒子的概率。解:03.01014.321)108(100/)100108(212ep100n平均值10n均方差)(2121)(222/)(21/)(21xfeennpxnnn成都理工大学马英杰预备知识——放射性测量中的统计性核辐射测量中,待测物理量本身是随机变量,准确值是计数值的数学期望,即无限次测量的平均值(真平均值),但实际只能进行有限次测量,即样本,把样本的平均值作为真平均值,故而存在着误差,即统计误差。统计误差规律%5067.0%7.9933%5.9522%3.68nnnnnnnnnn成都理工大学马英杰预备知识内容核辐射测量数据放射性测量中的统计性误差样本统计量及分类成都理工大学马英杰预备知识—误差误差的来源设备误差:测量设备本身带来的误差方法误差:由于测量方法或计算方法不完善造成的误差环境误差:由于测量的环境条件的影响而引入的误差(如温度、气压、振动、电磁场等等)人员误差:包括人员的视差、观测误差和估读误差等被测对象。。。成都理工大学马英杰预备知识—误差误差的分类——性质系统误差:同条件测量多次,误差的绝对值和符号保持恒定。随机误差(偶然误差):同条件测量多次,误差的绝对值和符号都变,服从一定的规律。待测物理量本身存在不变的确定值,误差是由于测量条件、设备、方法等造成的。统计误差:核辐射测量中,待测物理量本身是随机变量,准确值是计数值的数学期望,即无限次测量的平均值(真平均值),但实际只能进行有限次测量,即样本,把样本的平均值作为真平均值,故而存在着误差,即统计误差。不是由于测量条件等造成的。粗大误差:在规定的测量条件下,测量值显著地偏离实际值时所对应的误差。属于异常值,应按一定规则剔除。成都理工大学马英杰预备知识—误差精度精密度:表示测量结果中随机误差大小的程度。正确度:表示测量结果中系统误差大小的程度。准确度:表示测量结果与真值的一致程度,是测量结果中系统误差与随机误差的综合。成都理工大学马英杰预备知识—误差一般测量随机误差与核辐射测量统计误差的对比异(不同)一般测量:待测物理量本身存在不变的确定值,误差是由于测量条件、设备、方法等造成的;σ与μ无联系核辐射测量:待测物理量本身是随机的,不是由于测量条件等造成的;σ与μ有联系同测量中存在随机性误差分布相同(高斯分布)表示和处理方法相同(随机误差方法)成都理工大学马英杰预备知识—误差统计误差的表示方法与随机误差相同,用相应于一定置信概率的置信区间来表示。最常用的方法使用标准误差:标准误差:有两种表示方式(1)均方差:(2)标准偏差S:NNnn1)(